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PREFACE
In nature or in the laboratory setting, one encounters various physical systems 
containing numerous charged particles such as electrons and ions. These mobile 
charged particles interact with each other via long-range electromagnetic forces and 
thereby endow the system with medium-like properties. Such systems are called 
plasmas.

Physics of the plasma is concerned with the equilibrium and non-equilibrium 
properties of a statistical system containing many charged particles. One applies the 
basic principles of statistical mechanics and electrodynamics to elucidate the physical 
processes in such a system. The role that the long-range Coulomb interactions play 
in establishing collective phenomena, that is, organized behavior with strong inter-
particle correlation, is particularly emphasized.

As the density is increased, the plasma begins exhibiting features characteristic 
of a condensed matter, where short-range as well as long-range forces conspire to 
bestow the plasma with the character of a strongly coupled many-particle system. As the 
temperature is lowered, quantum statistic and dynamic effects start to play domi-
nant parts in plasmas, so that interplay with atomic, molecular, and nuclear physics 
becomes a significant issue. Associated with these is the emergence of features such 
as insulator-to-metal transition, order–disorder transition, paramagnetic to ferro-
magnetic transition, and chemical separation. Microscopic properties of the plasma 
depend delicately on these phase transitions, which in turn affect the macroscopic 
properties of the plasma through the rates of elementary and transport processes. 
Metallic hydrogen designates an issue most salient in these connections, experimen-
tally as well as theoretically.

The present volume aims at elucidating basic issues in the statistical physics of 
dense plasmas, interfacing with condensed matter physics, atomic physics, nuclear 
physics, and astrophysics. Key phrases on the contents include: equations of state, 
phase transitions, thermodynamic properties, transport processes, radiative pro-
cesses, and nuclear reactions, all influenced by the strong inter-particle, exchange 
and Coulomb correlation in dense plasmas.

Astrophysical dense plasmas are those we find in the interiors, surfaces, and outer 
envelopes of stellar objects such as neutron stars, white dwarfs, the Sun, and giant 
planets. Condensed plasmas in laboratory settings include those in ultrahigh-pres-
sure metal physics experiments undertaken for the realization of metallic hydrogen. 
We recapitulate physics issues studied over the past several decades on the elemen-
tary processes and the phase transitions in such plasmas through the fundamental 
principles. Included in the recapitulation are: scattering of electromagnetic waves, 
injection of charged particles or X-ray, phase diagrams, resistivity, metallic hydro-
gen, stellar and planetary magnetism, and enhancement of thermonuclear as well as 
pycnonuclear reactions. Particularly crucial in these connections are the generation 
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and emission of electromagnetic radiation and gravitational waves from the plasma 
surrounding neutron star systems, stellar black holes, and supermassive black holes; 
these imply the latest development of a foremost significance.

In completing this volume, the author expresses his heartfelt gratitude to R. Abe, 
J. Bardeen, G. Baym, D. M. Ceperley, L. B. Da Silva, R. Davidson, H. E. DeWitt, W. 
Ebeling, V. E. Fortov, J.-P. Hansen, T. Hatsuda, R. J. Hemley, W. B. Hubbard, N. Itoh, 
H. Iyetomi, B. Jancovici, H. Kitamura, W. Kohn, K. Makishima, J. Meyer-ter-Vehn, A. 
Nakano, S. Ogata, T. O’Neil, C. J. Pethick, D. Pines, R. Redmer, M. N. Rosenbluth, N. 
Rostoker, T. Tajima, S. Tanaka, H. Totsuji, K. Utsumi, H. M. Van Horn, P. Vashishta, J. 
Weisheit, and M. Yamada for collaboration and association over so many years. Parts 
of the volume depend to an extent on the lecture that the author delivered at an inter-
national conference in Brisbane, Australia, in December 2016.

Setsuo Ichimaru

Tokyo, Japan
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1
INTRODUCTION

Plasmas are any statistical systems containing mobile charged particles. When such 
a system is condensed, interaction between particles becomes so effective that the 
system may undergo changes in the internal states or the phase transitions. One 
applies the basic principles of statistical mechanics to elucidate the thermodynamic 
properties and the rates of elementary processes in such a system. We begin this 
volume by surveying salient examples of dense plasmas in the astrophysical and 
laboratory settings.

1.1 � DENSE PLASMAS IN NATURE
Astrophysical dense plasmas are those we find in the interiors, surfaces, and outer 
envelopes of stellar objects such as neutron stars, white dwarfs, the Sun, brown 
dwarfs, and giant planets (e.g., Van Horn, 1991; Ichimaru, 2004b). Condensed plasmas 
in the laboratory setting include: metals and alloys (solid, amorphous, liquid, and 
compressed), semiconductors (electrons, holes, and their droplets), various realiza-
tions of dense plasmas (shock-compressed, diamond-anvil cell, metal vaporization, 
pinch compression), and cryogenic, nonneutral plasmas (Davidson, 1990) includ-
ing pure electron- or ion-plasmas (Driscoll & Malmberg, 1983; Bollinger et al., 1990) 
in the electromagnetic traps or on the surfaces of dielectrics such as liquid helium 
(Grimes, 1978).

The physics issues in such dense plasmas are (Ichimaru, Iyetomi, & Tanaka, 1987): 
phase transitions, construction of the phase diagrams, and accounting for the stellar 
as well as magnetic structures. Phase transitions to be considered are: gas to liquid, 
liquid to solid (Wigner, 1935, 1938), insulator to metal (Wigner & Huntington, 1935), 
hadrons to quark–gluon plasmas (Yagi, Hatsuda, & Miake, 2005), and para- to ferro-
magnetism (e.g., Landau & Lifshitz, 1960a).

Elementary processes involved in those plasmas then include (Ichimaru & 
Ogata, 1995): scattering of electromagnetic waves (Rosenbluth & Rostoker, 1962; 
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Ichimaru,  1973), photon transfers and opacities, emission of latent heat through 
phase transitions, electric and thermal transports, shear moduli of the crystalline 
solids, and enhanced thermonuclear as well as pycnonuclear reactions (Gamow & 
Teller, 1938; Cameron, 1959). The rates of these processes may depend sensitively on 
the changes in microscopic, macroscopic, thermodynamic, dielectric, and/or mag-
netic states of the matter. These changes of states may be associated with freezing 
transitions, chemical separations between the compositions, ionization or insulator-
to-metal transitions, magnetic transitions, and transitions between normal to super-
conductive phases.

1.1.1 � ASTROPHYSICAL DENSE PLASMAS

Interiors of the main sequence stars such as the Sun are dense plasmas constituted mostly 
of hydrogen. The Sun has a radius, RS ≅ 6.69 × 105 km, and a mass, MS ≅ 1.99 × 1030 kg; 
the mass density is 1.41 g/cm3 on average. The central part of the Sun has a mass 
density of approximately 1.56 × 102 g/cm3, a temperature of approximately 1.5 × 107 K, 
and a pressure of approximately 3.4 × 105 Mbar (Bahcall & Pinsonneault, 1995). The 
mass fraction of hydrogen takes on a value of 0.36 near the center and 0.73 near the 
surface. The rates of nuclear reactions, photon transport and opacities, conductivities, 
atomic states, and their miscibility are all essential elements in setting a model for 
the Sun (Bahcall et al., 1982; Bahcall & Pinsonneault, 1995). The solar luminosity of 
LS ≅ 3.85 × 1026 W is to be accounted for, in particular, by the rates of nuclear reactions 
such as proton–proton chain reactions.

The interiors of giant planets (Jupiter, Saturn, Uranus, Neptune) offer important 
objects of study in the dense plasma physics (e.g., Hubbard, 1980, 1984; Stevenson, 1982). 
Typically, Jupiter has a radius, RJ ≅ 7.14 × 104 km ≅ 0.103 RS, and a mass, MJ ≅ 1.90 × 1027 
kg ≅ 0.95 × 10−3 MS. Figure 1.1 exhibits Jovian model showing three different internal 
phases: outer molecular hydrogen-helium fluid, inner metallic hydrogen-helium fluid, 
and the central fluid or solid “rock” composed of impurities. Models for the internal 

FIGURE 1.1  Jovian model showing three different phases.
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structures of those planets were proposed on the bases of the thermodynamic and 
transport properties of the interiors, the surfaces, and the atmosphere coupled with the 
observational data such as gravitational harmonics (Hubbard & Marley, 1989); we par-
ticularly note precise measurements made by NASA’s Juno spacecraft (Fortney, 2018).

The dominant magnetic-field contribution of the planet Jupiter for the external 
observer is the dipole of magnitude 4.2 gauss·RJ

3 and a tilt of ~10° to the rotation axis 
(Smith, Davis Jr., & Jones, 1976). Closer to the planet, however, the multipole contribu-
tions are so large that an additional dipole term at a depth of ~2 × 104 km seems to be 
implied (Elphic & Russel, 1978). One must accurately assess the electric resistivity, in 
particular, for the internal metallic hydrogen-helium plasmas to account for the stel-
lar magnetism.

The visible luminosity of the bright planet Jupiter, in fact, originates from solar 
radiation reflected from its surface, with albedo at 0.35. Jupiter has been known to 
emit radiation energy in the infrared range, approximately 2.7 times as intense as 
the total amount of radiation that it receives from the Sun. Through observation 
over terrestrial atmospheric transmission windows at 8−14 µm (Menzel, Coblentz, 
& Lampland, 1926) and 17.5−25 µm (Low, 1966), we have come to accept Jupiter being 
an unexpectedly bright infrared radiator. This feature has been reconfirmed quanti-
tatively by a telescope airborne at an altitude of 15 km and through flyby measure-
ments with Pioneer 10 and Pioneer 11 spacecrafts. The effective surface temperature 
determined from integrated infrared power over 8 to 300 µm was 129 ± 4 K, while the 
surface temperature calculated from equilibration with the absorbed solar radiation 
was 109.4 K (Hubbard, 1980). The balance needs to be accounted for by internal power 
generation; hence, the issue of excess infrared luminosity of Jupiter.

Returning to stellar objects, we now treat various stages of stellar evolution exhib-
ited in Figure 1.2.

One of the proton–proton chains, the fundamental nuclear processes in the main-
sequence stars, consists of the series of reactions,

	 p p e d p pe( ) ( ), , , ,+ ( )ν γ  He He He3 43 2 	  

which altogether yields

	 4 2 2 26 2p e e® + + + ( )+a n . .MeV 	  

Here, p, d, α, e+ and ve, respectively, denote a proton, a deuterium, an alpha particle 
(the nucleus of 4He), a positron, and an anti-neutrino; p (p, e+ve) d, for instance, describe 
the reactions,

	 p p d e e+ ® + ++ n .	  

We parenthetically remark that the probabilities of these reactions are extremely 
small because of the involvement of charge transfers by positrons.
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Helium so produced is accumulated in the stellar core, and thereby leads the 
system to an inflated, relatively low-temperature star called a red giant. Helium 
burning, one of the major reaction processes in stellar evolution, then produces a 
carbon out of three α particles; another α capture in carbon then produces oxygen, 
and so on.

The white dwarf (Shapiro & Teukolsky, 1983) represents a final stage of stellar evolu-
tion, corresponding to a star of about one solar mass compressed to a characteristic 
radius of 5000 km and an average density of 106 g/cm3. Its interior consists of a multi-
ionic condensed matter composed of C and O as the main elements and Ne, Mg, …, 
Fe as trace elements. Condensed matter issues in white dwarfs include assessment 
of the possibilities of chemical separation or the phase diagrams associated with 
the freezing transitions of the multi-ionic plasmas (Stevenson, 1980; Van Horn, 1991; 
Ogata et al., 1993). These issues are related to the internal structures and cooling rates 

FIGURE 1.2  Schematics showing stages of stellar evolution.
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of white dwarfs (D’Antona & Mazzitrlli, 1990) as well as the rates of nuclear reactions 
(Ichimaru, 1993), evolution and nucleosynthesis (Clayton, 1968), detailed mechanisms 
of supernova explosion, and possible formation of a neutron star (Canal, Isern, & 
Labay, 1990; Nomoto & Kondo, 1991)

As a progenitor of type Ia supernova, a white dwarf with an interior consisting of a 
carbon–oxygen mixture can be considered a kind of binary-ionic mixture (BIM), with 
a central mass density of 107 to 1010 g/cm3 and a temperature of 107 to 109 K (Starrfield 
et al., 1972; Whelan & Iben, 1973; Canal & Schatzman, 1976). Thermonuclear runaway 
leading to supernova explosion is expected to take place when the thermal output 
due to nuclear reactions exceeds the rate of energy losses. Assuming that neutrino 
losses are the major processes in the latter, one estimates (e.g., Arnett & Truran, 1969; 
Nomoto, 1982) that the nuclear runaway should take place when the nuclear power 
generated exceeds 10−9~10−8 W/g. These values give approximate measures against 
which the rates of nuclear reactions may be compared.

The neutron star (e.g., Baym & Pethick, 1975; Shapiro & Teukolsky, 1983), another 
of the final stages in the stellar evolution, is a highly degenerate star correspond-
ing approximately to a compression of a solar mass into a sphere with a radius of 
approximately 10 km.

We depict in Figure 1.3 a schematic structure of a neutron star. According to model 
calculations, it has an outer crust, consisting mostly of iron, with a thickness of several 
hundred meters and a mass density in the range of 104~107 g/cm3. At these densities, 
iron atoms are completely ionized, so each contributes 26 conduction electrons to the 
system. At temperatures near 107 K, the thermal de Broglie wavelengths of the resul-
tant Fe nuclei are substantially shorter than the average inter-nuclear separations; the 
iron nuclei may be regarded as forming classical ionic plasmas.

When the mass density exceeds a critical value near 107 g/cm3 for the electron cap-
tures, neutron-rich “inflated” nuclei begin to emerge. At approximately 4 × 107 g/cm3, 

FIGURE 1.3  Structures of a neutron star.
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the neutron drip density, the estimated atomic and mass numbers for such nuclei are 
Z = 36 and A = 118; at approximately 2 × 1014 g/cm3, which defines the inner edge of an 
inner crust, one calculates Z = 201 and A = 2500 (Baym, Pethick, & Sutherland, 1971).

Over the bulk of the crustal parts, the nuclei are considered to form a Coulomb solid. 
A neutron star may then be looked upon as a “three-component star,” consisting of 
an ultra-dense interior of neutron fluids with fractional constituents of proton and 
electrons, a crust of Coulomb solids, and a thin layer of “ocean” fluids. Electron trans-
ports and photon opacities in the outer crust and in the surface layer play the crucial 
parts (Gudmundsson, Pethick, & Epstein, 1982) in the estimate of the cooling rates for 
neutron stars (Nomoto & Tsuruta, 1981). Non-vanishing shear moduli associated with 
the crustal solids (Fuchs, 1936; Ogata and Ichimaru, 1990) lead to a prediction of rich 
spectra in the oscillations of a neutron star (McDemott, Van Horn, & Hansen, 1988; 
Strohmayer et al., 1991).

In the central core of a neutron star with a mass density in excess of 1 billion ton/cm3,  
a phase with the quark–gluon plasmas is expected (Baym, 1995; Yagi, Hatsuda, & Miake, 
2005).

1.1.2 � DENSE PLASMAS IN LABORATORIES

The inertial-confinement fusion (ICF) is one of the schemes proposed for the develop-
ment of nuclear fusion devices. It employs high-power laser beams to compress and 
implode a pellet that contains fusion fuel of hydrogen isotopes (e.g., Motz, 1979; Hora, 
1991). The leading device currently in operation is National Ignition Facilities (NIF) at 
the Lawrence Livermore National Laboratory.

The states of plasmas for the ICF research resemble those of the solar interior men-
tioned in the preceding subsection; the projected temperatures are on the order of 107 
to 108 K. Those materials that drive implosion of the fuel consist of high-Z elements, 
such as C, Al, Fe, Au, Pb, which after ionization form plasmas with charge numbers 
substantially greater than unity. The atomic physics of such a high-Z element is influ-
enced strongly by the correlated behaviors of charged particles in a dense plasma 
(e.g., Goldstein et al., 1991).

Dense plasmas in the laboratories also include those produced by shock compres-
sion (e.g., Fortov, 1982), in pinch discharges (e.g., Pereira, Davis, & Rostoker, 1989), and 
through metal vaporization (Mostovych et al., 1991).

Ultrahigh-pressure metal physics experiments have been undertaken for labora-
tory realization of metallic hydrogen and for the elucidation of the equations of state 
and the transport properties of dense hydrogen. The experimental approaches include 
diamond-anvil-cell compression (e.g., Mao & Hemley, 1989, 1994) and shock compres-
sion (e.g., Dick and Kerley, 1980; Mitchell & Nellis, 1981; Fortov, 1995). Metallization 
of molecular hydrogen, though elusive in the diamond-anvil-cell experiments  
(Ruoff & Vanderbough, 1990; Mao, Hemley, & Hanfland, 1991; Hemley et al., 1996), 
was successfully demonstrated in experiments using compression through shock 
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wave reverberation between electrically insulating sapphire (Al2O3) anvils (Weir, 
Mitchell, & Nellis, 1996; Da Silva et al., 1997).

Pressurized liquid metals offer an interesting environment in which to study 
nuclear reactions (Ichimaru, 1991, 1993). It may be shown that d (p, γ) 3He reactions can 
take place at a power-producing level on the order of a few kW/cm3 if such a material 
is brought to a liquid-metallic state under an ultrahigh pressure on the order of 102 to 
103 Mbar at a mass density of 10 to 102 g/cm3 and a temperature of (1–2)×103 K, in the 
vicinity of the estimated melting conditions for metallic hydrogen. Such a range of 
physical conditions may be accessible through extension of those ultrahigh-pressure 
metal technologies.

Some of the nonneutral plasmas (Davidson, 1990) cooled to sub-kelvin temperatures 
may likewise qualify as dense plasmas. Penning-trapped, pure electron (Driscoll & 
Malmberg, 1983), or pure ion (Bollinger et al., 1990) plasmas rotate around the mag-
netic axis due in part to space charge fields in the radial directions. In the frame 
co-rotating with the bulk of the particles, the Penning-trapped plasmas have been 
stably maintained at cryogenic temperatures, 10−2 to 100 K, for many hours, exhibiting 
ordered structures in the configurations of ions, reminiscent of a freezing transition.

1.2 � BASIC PARAMETERS
We model a plasma at a temperature T as consisting of atomic nuclei (which will be 
called “ions”) with an electric charge Ze and a rest mass M (= AmN) and electrons 
with the electric charge -e and the rest mass m. Here, Z is the charge number, and A 
refers to the mass number with mN denoting the mass of a nucleon.

In certain cases, salient features of the plasma can be clarified through the study  
of a one-component plasma (OCP) (Ichimaru, 1982), as against a two-component,  
electron–ion plasma characterized in the foregoing paragraph. This model consists of 
a single species of charged particles with number density n embedded in a uniform 
background of neutralizing opposite charges.

Noticeable examples of such an OCP obeying the classical statistics may be found 
in the carbon ions in the interior of a white dwarf or in the iron ions in the outer 
crust of a neutron star, where dense electrons form the uniform negative-charge 
background.

Another example may be offered by the system of conduction electrons at metallic 
densities, where the ions forming crystalline lattice may be regarded as a smeared-
out positive-charge background, in the so-called “jellium” model; the electrons are 
fermions with spin-1/2 obeying the quantum statistics.

Still another example may be offered by the system of protons in the metallic 
hydrogen, where the dense electrons may be regarded as a uniform negative-charge 
background; the protons, forming the OCP, are fermions with spin-1/2 obeying the 
quantum statistics.
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1.2.1 � CLASSICAL OCP

Consider the OCP obeying the classical statistics, as with the metallic ions in the 
white-dwarf interiors. The ratio between the average Coulomb energy, (Ze)2/a, and 
the average kinetic energy, kBT, per ion then introduces the Coulomb coupling parameter 
Γ for such an OCP via
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with a = (4πn/3)–1/3 referring to the ion-sphere radius and kB (= 1.38066 × 10−16 erg/K) 
denoting Boltzmann’s constant; hereafter, lengths will be measured in units of a, 
unless specified otherwise. We call OCP as strongly coupled when Г > 1, weakly cou-
pled when Г < 0.1, and intermediately coupled when 0.1 ≤ Г ≤ 1.

As we observe numerically in (1.1), Γ takes on extremely small values in ordinary 
gaseous plasmas. For example, we may assume n = 1011 cm−3, T = 104 K for a gaseous 
discharge plasma, n = 1016 cm−3, T = 108 K for a plasma in a controlled thermonu-
clear device, and n = 106 cm−3, T = 106 K for a plasma in the solar corona. Assuming 
Z = 1 for those plasmas, we find Γ ≈ 10−3, 10−5, and 10−7, respectively. They are thus 
weakly coupled plasmas; their thermodynamic properties are analogous to those 
of an ideal gas.

Coulomb interaction plays the cardinal role in determining the physical properties 
of the plasma. In the theoretical treatment of plasmas in strong coupling, one cannot 
resort to a usual scheme of expansion in which the Coulomb interaction is regarded 
as a weak perturbation. We may also note that the interaction potential adopted for 
OCP has a simple and unique character: Among the repulsive potentials expressible 
as inverse power r−ν of the distance r, OCP constitutes a typical example (v = 1) of soft 
cases, while the hard-core case corresponds to the other extreme, v → ∞.

It may therefore be said that we are here faced with a charged liquid problem. It is, 
nevertheless, to be noted that strongly coupled plasmas exhibit a remarkable similar-
ity to hard-sphere systems in a number of significant aspects, such as short-ranged 
ordering in solidification (Alder & Wainwright, 1959). In fact, the short-ranged repul-
sive forces do play the essential parts as the origin of cohesive forces inducing Wigner 
crystallization (Wigner, 1935, 1938) and ferromagnetic transitions.

Thermodynamics and phases of the strongly coupled plasma, therefore, differ 
markedly from those of the weakly coupled plasma. We will find later an OCP may 
undergo the Wigner crystallization when Γ exceeds 172~180. We shall also find that 
the value of Γ critically affects the enhancement rate of nuclear reactions in dense 
plasmas (Ichimaru, 1993).

We may point out that the “dense plasmas” here refer to “high material-density 
plasmas,” where Γ > 1 mostly as n takes on an exceedingly large number. Under these 
circumstances, inter-particle correlations seriously affect the phase-related properties 
such as rates of the elementary processes (Ichimaru & Ogata, 1995).
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In these connections, we also recognize the significance and importance of the 
activities in the fields of “high-energy density science.” Here, the phase-related 
properties of high-energy density plasmas created as radiation-heated and shock-
compressed matter are probed by powerful penetrating X-ray sources (Glenzer & 
Redmer, 2009; Dorchies & Recoules, 2016). It represents the warm matter or intense 
beam science, describing “high kinetic-energy density plasmas” mostly with Γ < 1. In 
this volume, we shall touch on some of those recent developments as well.

1.2.2 � ELECTRON LIQUIDS AT METALLIC DENSITIES

In the jellium model of metals, the itinerant electrons are treated as forming a quan-
tum liquid (Pines & Nozières, 1966), with the Fermi energy,

	 E
m

nF = ( )�2
2 2 3

2
3π

/
, 	  (1.2)

measuring the average kinetic energy in such a system. Here, ћ = 1.0546 × 10−27 erg·s 
denotes the Planck constant divided by 2π, m = 9.1095 × 10−28 g is the mass of an elec-
tron, and n stands for the number density of electrons. The electron being a fermion, 
each quantum state may be occupied by a single electron at most (Pauli exclusion prin-
ciple); the quantum states are occupied by the n electrons successively from the lowest 
energy state. The Fermi energy corresponds to the energy of the final n-th electron.

Since EF in (1.2) is an increasing function of n, EF ≫ kBT may be realized in an 
electron system at high density. In these circumstances, quantum effects as fermi-
ons become more dominant than thermal effects; it is thus relevant to use the Fermi 
energy as a measure of kinetic energies.

The ratio between the Coulomb energy and the Fermi energy is then given by
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The thermodynamic properties of such an electron liquid are thus characterized by 
the two (density and temperature) dimensionless parameters (Ichimaru, 1982), that is, 
rs in (1.4) and the degeneracy parameter,

	 θ
π

≡
( )
2

32 2 2 3
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Bk

�
/ , 	  (1.5)

representing the ratio between the thermal energy, kBT, and the Fermi energy, EF. Here
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is the Wigner–Seitz radius or the ion-sphere radius introduced earlier.
The rs parameter, in fact, corresponds to this radius a measured in units of the Bohr 

radius, aB = ħ2/me2 = 5.292 × 10−9 cm. The values of rs estimated for various metals at 
room temperatures are: 2.1 (Al), 2.7 (Mg), 3.3 (Li), 4.0 (Na), 5.0 (K), and 5.8 (Cs); in light 
of (1.3), they qualify as strongly coupled systems.

In these connections, it may also be useful to note the classical Coulomb coupling 
parameter (1.1) related to those dimensionless parameters as
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Thus, Γ, rs, and θ are the dimensionless parameters of interest for dense plasmas.

1.3 � CONSEQUENCES ON THE COULOMB INTERACTION
The extent of Coulomb coupling in plasmas depends on the temperature and the 
density. The Coulomb coupling parameter (1.1) gives a measure on the strength of 
such a coupling.

The consequences on the Coulomb coupling are multifold in plasmas. We here sin-
gle out cooperative effects creating organized behaviors and collisional effects that 
may destroy the organized behaviors; we begin with the latter.

1.3.1 � SCATTERING BY COULOMB FORCES

Consider an event of scattering between two charged particles, Z1e and Z2e, in the 
plasma, as depicted in Figure 1.4; their reduced mass and relative velocity are denoted 
as µ and v in the center-of-mass system. Following a standard treatment in the clas-
sical mechanics (e.g., Landau & Lifshitz, 1960b), one finds the relation between the 
scattering angle θ and the impact parameter b as

	 cot .
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Z Z e
	  (1.8)

The differential cross-section dQ for scattering into an infinitesimal solid angle dΩ 
is then given by
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This is the formula for Rutherford scattering.
The increment of momentum in the direction of the OZ axis, in Figure 1.4, is 

∆p = µv(1 − cos θ). Since the scattering is symmetric with respect to the OZ axis, the 
increments of momentum in the other two directions vanish on average. Consequently, 
the cross-section Qm for the momentum transfer due to Coulomb scattering is calcu-
lated as
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We have deliberately written the lower limit of the integral in (1.10) as θmin; if we let 
θmin approach zero, Qm would diverge logarithmically.

According to (1.8), a small scattering angle θ corresponds to a large impact param-
eter b. The divergence in (1.10) thus originates from cumulative effects of large-dis-
tance scattering, reflecting the long-range nature of the Coulomb interaction.

When Z1e and Z2e are separated at a large distance in a plasma, many other plasma 
particles may be found between them; hence, the effective interaction between Z1e 
and Z2e is altered because of the presence of those other particles. In other words, in 
the calculation of the cross-section such as (1.10), one must take account of the effec-
tive potential including the many-body effects of other charged particles.

1.3.2 � DEBYE SCREENING

Consider a weakly coupled (Γ ≪ 1) classical OCP and treat the effective electrostatic 
potential, f( )r , around a test charge Z0e introduced therein at the origin, r = 0. The 
Poisson equation then is

FIGURE 1.4   Coulomb scattering.
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	 ∇ = − −2
04 4φ π δ π ρ( ) ( ) ( ) ,r r rZ e Ze 	 (1.11)

where Ze r( )r  refers to the induced charge density and δ(r) is the three-dimensional 
delta-function representing the density distribution of a point particle located at the 
origin (cf. Appendix I).

The deviation r( )r  from the average induced by the effective potential f( )r  is cal-
culated in accord with the Boltzmann distribution as
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The argument of the exponential, being the ratio between the potential energy 
Ze f( )r  and the thermal energy, takes on infinitesimal value when Γ ≪ 1, so that we 
may expand it as
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Substitution of this expression in (1.11) yields a differential equation,
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which we may solve through the method of Fourier transformation, as explained in 
Appendix II, to obtain
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introduced here is the Debye length, beyond which the electrostatic potential of the 
external charge may be regarded as effectively screened by the space charge induced 
in the plasma. This is the phenomenon called Debye screening (Debye & Hückel, 1923).

In light of these observations, we may thus take the θmin (≪1, for a plasma with  
Γ ≪ 1) in (1.10) as that determined from (1.8) in which b is set at λD, and find
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The logarithmic factor appearing here is called the Coulomb logarithm.
Argument of the Coulomb logarithm corresponds to an average number of par-

ticles in a sphere with a radius λD, that is, the Debye number N nD D= ( )4 3 3p l/ , a huge 
number with Γ ≪ 1. Numerically, that Coulomb logarithm takes on the value,
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Hence we find that not only ND ≫ 1, but also ln( )9ND  ≫ 1 holds true.
The Debye screening thus represents an illuminating example of the cooperative 

phenomena, in that so many (~ND) particles act together in the same (screening) 
directions by an infinitesimal degree each (~ND

-1) to screen the effect of externally 
applied field.

1.3.3 � THE ION-SPHERE MODEL

Thus far we have considered the problem of effective potential in a weakly coupled 
plasma and arrived at the concept of Debye screening. As we move into the strong 
coupling domain, Γ > 1, the Debye number becomes smaller than unity; the concept 
of Debye screening as a cooperative phenomenon is no longer applicable. A charged 
particle creates a sizable domain around itself where no other particles are likely to 
be found, a sort of a territorial domain of its own influence, which may be looked 
upon as a Coulomb hole.

To understand salient features of such a strongly coupled plasma, it is instructive 
to introduce the ion-sphere model (Salpeter, 1954), which is equivalent to the Wigner–
Seitz sphere used in the solid-state physics (e.g., Pines, 1963). As Figure 1.5 illustrates, 
one considers a charged particle Ze and a surrounding neutralizing charge sphere, 
whose total electric charge is just to cancel the charge Ze. This sphere thus represents 
the terrestrial domain of influence for the charge Ze. Its radius is a of (1.6); the charge 
density, -3Ze/4πa3.

The ion sphere thus consists of a single ion and its surrounding negative-charge 
sphere. The electrostatic energy EIS associated with the ion sphere is then calculated in 
the following way: First, the electrostatic potential produced by the negative-charge 
sphere at r (≤ a) is
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The electrostatic energy of the negative-charge sphere itself is then
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Summation of this energy and ZeϕIS(r) yields
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The first term on the right-hand side of (1.18) represents the electrostatic energy when 
the ion Ze is located at the center of the ion sphere. The second term, being proportional 
to r2, induces a motion of the harmonic-oscillator type to the ion. The average energy of 
a harmonic oscillator, including the kinetic energy, is kBT per a degree of freedom. The 
density of internal energy UIS, calculated on the basis of the ion-sphere model, is thus

	
U

nk TB

IS = - +0 9 3. .G 	  (1.19)

This result, in fact, takes on a value close to computer simulation results for the 
strongly coupled OCP, as we shall see later.

According to the ion-sphere model of Figure 1.5, the electrostatic potential of the 
central charge is confined within a distance α1a, where α1 is a correction factor of 
order unity accounting for uncertainty involved in a strict enforcement of the ion-
sphere model. Putting Z1 = Z2 = Z in (1.8), we determine the scattering angle θmin cor-
responding to the impact parameter at α1a. The cross-section (1.10) so determined 
takes the form,

FIGURE 1.5  The ion-sphere model.
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When Γ > 1, we may take α1aμv2/(Ze)2 < 1 for the bulk of the particles, so that the loga-
rithm in (1.20) may be expanded to yield

	 Q am � 2 1
2p a( ) .	  (1.21)

As we would have anticipated, the scattering cross-section (1.21) is here seen to be 
proportional to the cross-section πa2 of the ion sphere.

1.3.4 � PLASMA OSCILLATION

Thus far we have considered the issues of static variation in plasmas such as Debye 
screening and the ion-sphere model. The Coulomb interaction produces not only 
such a static cooperative effect, but also the plasma oscillation, which may be regarded 
as dynamic cooperative phenomenon.

To treat such a problem, we begin with the equation of motion describing the tem-
poral behavior of density fluctuation in an OCP, consisting of N particles with electric 
charge Ze and mass m in volume V; n = N/V is then the average number density. Let 
rj(t) be the spatial trajectory of the j-th particle; the density fluctuation arising from 
this particle is then expressed as δ[r – rj(t)], in terms of the delta-function introduced 
in (1.11). We may thus express spatial fluctuations of the density field as
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summing up the contributions from all the particles. We now calculate the Fourier 
component of the density fluctuation with wave vector k, with the periodic boundary 
conditions appropriate to volume V (cf. Appendix II), to yield
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This quantity refers to the spatial Fourier components of density fluctuations; δ(k, k′) 
is the three-dimensional Kronecker delta.

We then derive an equation of motion by differentiating this quantity twice with 
respect to time; since �r vj j=  represents the velocity of the j-th particle, we find
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The quantity �v j representing the acceleration of the j-th particle can be calculated 
from the force exerted upon this particle by all other charges and the neutralizing 
background charge,
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Since the Coulomb potential is Fourier expanded as (cf. Appendix II),
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we obtain from (1.24)
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where ∑′ implies that the q = 0 term is not to be summed in the summation. The first 
term on the right-hand side represents the effect of the translational motion of the 
individual particles; the second term stems from the Coulomb interaction. From the 
latter, we particularly single out the q = k term to yield,
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Here, we have introduced another important parameter,
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called the plasma frequency; for the electron plasma, it takes on the values,
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If the right-hand side of (1.26) can be neglected altogether, the temporal variation 
of the density with wave vector k obeys an equation of motion for the harmonic 
oscillator with the frequency (1.27). As we see in (1.23), ρk contains coordinates of all 
the particles; nevertheless, we find here the possibility of such a quantity exhibiting 
an orderly oscillatory behavior under the action of the Coulomb forces, that is, an 
appearance of the collective motion.
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1.3.5 � COLLECTIVE MOTION AND INDIVIDUAL-PARTICLES BEHAVIOR

In the early 1950s, Bohm and Pines advanced a series of papers (Bohm & Pines, 1951, 
1953; Pines & Bohm, 1952) dealing with “a collective description of electron interac-
tions,” in which they explicitly stated:

The density fluctuations may be split into two approximately independent components. 
The collective component, that is, the plasma oscillation, is present only for wavelengths 
greater than the Debye length. The individual particles component represents a collec-
tion of individual electrons surrounded by co-moving clouds of screening charges; collisions 
between them may be negligible under the random-phase approximation.

The equation of motion (1.26) derived in the preceding section, in fact, corroborates 
precisely with this statement. To see this, let us investigate the relative magnitudes of 
the terms on its right-hand side in some detail.

First, we carry out a statistical estimate of the first term on the right-hand side of 
(1.26) with the aid of the Maxwell–Boltzmann velocity distribution,
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exp ,	  (1.29)

to obtain,

	 the first term » ( )k T m kB / .2rk 	  (1.30)

The second term, on the other hand, represents a nonlinear term consisting of the 
products of density variations. On the complex-number plane as shown in Figure 1.6, 
the Fourier components of density fluctuations are expressed as summations of unit 
vectors over the total number of the particles. For a uniform system, the phase angles, 
-k·rj, distribute randomly as long as k ≠ 0; hence, the expectation value rk = 0.

Bohm and Pines then assumed a possibility that an analogous situation may become 
applicable to the second term on the right-hand side consisting of products of den-
sity fluctuations. They thereby introduced an approximation, called the random-phase 
approximation (RPA), in which those product terms be ignored. Even though the phase 
-k·rj may be distributed randomly, however, products between fluctuations, ρk-qρq, can-
not generally be ignored. Setting the origin of the nomenclature aside, we may reinter-
pret the RPA as an approximation applicable to the cases of weak density variations 
whereby the equation of motion may be linearized with respect to fluctuations. The 
RPA thus provides a fairly accurate description of weakly coupled plasmas near ther-
modynamic equilibrium. In these circumstances, we may ignore the second term on 
the right-hand side of (1.26), as it consists of nonlinear terms of the fluctuations.

Let us thus adopt this RPA. Equation (1.26) now becomes

	 ��r w r rk k k+ = -( )p Bk T m k2 2/ .	  (1.31)
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In the long-wavelength regime such that k kD
2 � 2 , where

	 k n Ze
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D
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= ( )é

ë
ê

ù

û
ú

4 2 1 2
p

/

,	  (1.32)

called the Debye wavenumber, is the inverse of the Debye length (1.14), we may ignore 
the right-hand side of (1.31); the density fluctuations in plasmas behave collectively 
and oscillate at a frequency near ωp.

In the short wavelength regime such that k kD
2 2� , Eq. (1.31) now becomes,

	 ��r rk k= -( )k T m kB / .2 	  

This is nothing but the equation of motion for a collection of individual particles 
screened within the Debye length by co-moving clouds of screening charges.

The statements of Bohm and Pines concerning the collective behaviors in plasmas 
thus hold true within the RPA.

FIGURE 1.6  Representation of a particle on the complex plane.
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2
FUNDAMENTALS

Charged particles in plasmas interact with each other via Coulomb forces and thereby 
exhibit a variety of interesting features as described in the preceding chapter. In 
many cases, these features are expressed in terms of density–density correlations and 
fluctuations. For example, the Debye screening and the ion-sphere model are related 
to static correlations; the plasma oscillation may be looked upon as an appearance 
of dynamic correlations. In this chapter, as the fundamentals on the statistical 
physics of dense plasmas, we study fluctuations, density–density correlations and 
their relationship with thermodynamic variables along with dielectric formulations, 
density-functional approaches, and computer simulation methods.

As a specific example of multicomponent plasmas, we treat here mostly the cases 
of an electron liquid such as the system of conduction electrons in the metal, where 
dependence on spin orientations as fermions is explicitly accounted for. Extension of 
those theories to other cases of multicomponent plasmas is rather straightforward.

2.1 � DENSITY-FLUCTUATION EXCITATIONS
For simplicity and clarity, we begin with the second-quantization formalisms for a 
statistical system of identical particles with total number N in volume V, where the 
distinction between bosons and fermions is particularly singled out.

2.1.1 � SYSTEM OF IDENTICAL PARTICLES

The properties of a quantum system consisting of many identical particles are most 
conveniently described in terms of the second-quantized, Heisenberg representation, 
particle-creation and annihilation operators (e.g., Kadanoff & Baym, 1962). The cre-
ation operator ψ†(r,t), when acting to the right on the state of the system, adds a particle 
to the state at the space-time point r, t; the annihilation operator ψ(r,t), the adjoint of the 
creation operator, acting to the right, removes a particle from the state at the point r, t.

Statistical Physics of Dense Plasmas Fundamentals
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The macroscopic operators of direct physical interest can all be expressed in terms 
of products of a few ψs and ψ†s. For example, the density of particles at the point r, t is

	 n t t t( , ) ( , ) ( , ),r r r= ψ ψ† 	 (2.1a)

since the act of removing and then immediately replacing a particle at r, t measures 
the density of particles at that point; the operator for the total number of particles is

	 N t d t t( ) ( , ) ( , ).= ∫ r r rψ ψ† 	 (2.1b)

Similarly, the total energy of a system of particles of mass m interacting through an 
instantaneous two-body potential v(r) is given by
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The equation of motion for any operator in the Heisenberg representation is

	
i X t

t
X t H t

¶
¶

= [ ]( )
( ), ( ) .	 (2.3)

Here and hereafter, [A, B] = AB − BA means a commutator. Since [H(t), H(t)] = 0, we 
see that the Hamiltonian is independent of time. Also, the Hamiltonian does not 
change the number of particles, [H, N(t)] = 0, and therefore N(t) is also independent 
of time. Because of the time independence of H, (2.3) may be integrated in the form

	 X t iHt X iHt( ) exp( ) ( )exp( ).= -0 	 (2.4)

Particles may be classified into one of two types: Fermi–Dirac particles, also called 
fermions, which obey the exclusion principle, and Bose–Einstein particles, or bosons, 
which do not. The wave function of any state of a collection of bosons must be a 
symmetric function of the coordinates of the particles, whereas, for fermions, the 
wave functions must be antisymmetric. One of the main advantages of the second-
quantization formalism is that these symmetric requirements are simply represented 
in the equal-time commutation relations of the creation and annihilation operators. 
These commutation relations are

	 ψ ψ ψ ψ( , ) ( , ) ( , ) ( , ) ,r r r rt t t t′ ′ =∓ 0	

	 ψ ψ ψ ψ† † † †( , ) ( , ) ( , ) ( , ) ,r r r rt t t t′ ′ =∓ 0	 (2.5)

	 ψ ψ ψ ψ( , ) ( , ) ( , ) ( , ) ( ).r r r r r rt t t t† †′ ′ = − ′∓ δ 	
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where the upper sign refers to Bose–Einstein particles and the lower sign refers to 
Fermi–Dirac particles. We see, for fermions, that ψ2(r, t) = 0. This is an expression of 
the exclusion principle—it is impossible to find two identical fermions at the same 
point in space and time.

2.1.2 � STRUCTURE FACTORS AND CORRELATION ENERGY

Essential features of the density-fluctuation excitations may be described in terms of 
the structure factors (e.g., Ichimaru, 2004b), which represent the spectral distributions 
of fluctuations in space and time. The dynamic structure factor,

	 S
V

dt t t t i t( , ) ( ) ( ) exp( )k k kω
π

ρ ρ ω= ′ + ′
−∞

∞

−∫1
2

	 (2.6)

defined in terms of the spatial Fourier transformation of density fluctuations,

	 ρk t d n t N V i( ) ( , ) / exp( ),= −[ ] − ⋅∫ r r k r 	 (2.7)

portray the spectral distribution of the fluctuations in the wave vector and frequency 
space, (k, ω). In (2.6) and hereafter, <···> denotes average over states of the system.

The static structure factor S(k) defined as
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d Sk kk( ) = ( ) = ( )
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¥

ò1 12r w w, 	 (2.8)

corresponds to the spectral distribution of spatial density fluctuations, which 
describes spatial density configurations such as lattice structures; n = N/V is the num-
ber density on average.

The radial distribution function g(r) is a joint probability density of finding two 
particles at a separation r. It is related directly to the static structure factor (2.8) as
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	 (2.9)

The correlation energy Uint per unit volume, a statistical average of the second term 
on the right-hand side of (2.2), can then be calculated, once either S(k) or g(r) is known, 
through formulae,
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Here, v(k) is the Fourier transform of v(r) = e2/r; explicitly, it is 4πe2/k2, as reproduced 
later with (2.19). Its derivation may be accounted for, in reference to (AII.13).

2.1.3 � SYSTEM OF ELECTRONS AT METALLIC DENSITIES

We now turn to an electron liquid at a metallic density and consider the creation and 
annihilation operators, c†

pσ and cpσ, for the electrons with momentum p and spin  
σ (= ↑, ↓). The operators satisfy the anticommunicator relations for the fermions:

	 c c c cp p p ps s s s
† †, , ,¢ ¢ ¢ ¢{ } = { } = 0 	 (2.11a)

	 c cp p ppσ σ σσ
† , ′ ′ ′ ′{ } = δ δ 	 (2.11b)

Here and hereafter, {A, B} = AB + BA, meaning an anticommutator; δpp′ and δσσ′ are 
the Kronecker deltas.

For a treatment of the density-fluctuation excitations, it is convenient to work with 
operators representing electron-hole pairs (cf. Wigner, 1932; Brittin and Chappell, 1962),

	 ρ σ σ σpk p p k= +c c†
� . 	 (2.12)

The Fourier component of spin-dependent, density-fluctuation excitations with 
wave vector k is then given by

	 ρ ρσ σk pk

p

= ∑ ; 	 (2.13a)

total density fluctuations are calculated as

	 ρ ρ σ

σ

k pk

p

= ∑
,

. 	 (2.13b)

Its classical counterpart has been introduced in (1.23).
The Fourier components of the charge- and spin-density-fluctuation excitations 

are

	 ρ ρ σ

σ
k pk

p

( )

,

,c e= − ∑ 	 (2.14a)

	 ρ ρ ρk pk pk

p

( ) .s = −( )↑ ↓∑ 	 (2.14b)

The occupation number operator for the state (p, σ) is finally expressed as

	 np p kσ σρ= =, , ,0 	 (2.15)
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as the act of removing and then immediately replacing a particle at p and σ measures 
the occupation number at that point.

2.2 � DIELECTRIC FORMULATION
The dielectric response functions are a class of linear response functions that stem 
from the exchange and Coulomb interactions between particles. These describe the 
dielectric properties associated with various density-fluctuation excitations in plas-
mas (e.g., Ichimaru, 2004b).

Response functions of plasmas are formulated through the application of an exter-
nal potential field Fs wext ( ),k  that couples with the density fluctuations (2.12). The 
total Hamiltonian of the system is given as a sum of the unperturbed and external 
Hamiltonians,

	 H H Htot ext= + ,	 (2.16)

so that
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Here
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is the Fourier transform of the Coulomb interaction e2/r; the summation in the sec-
ond term of (2.17) implies omission of the terms with k = 0; and “hc” stands for the 
Hermitian conjugate. The “0” in (2.18) denotes a positive infinitesimal, which desig-
nates an adiabatic turning-on of the external potential; this precaution then ensures 
a causal response of the system.

We here consider a multicomponent system of fermions with electric charge Zσ for 
generality; in the case of an electron system, one sets Zσ = −1.

According to (2.3), the Heisenberg equation of motion for ρpkσ is

	 i
t

H�
∂
∂

=  ρ ρσ σpk pk , .tot 	 (2.20)

Explicit calculation with the aid of (2.17) and (2.18) yields
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is the excitation frequency of an electron-hole pair.
We note here that the four terms on the right-hand side of (2.21) govern the evolu-

tion of density-fluctuation excitations in the electron system. These terms mean as 
follows: First, the term (2.21a) describes free motions of the electron-hole pairs. The 
terms (2.21b) and (2.21c), on the other hand, stem from the Coulomb interaction. The 
former represents a mean field contribution linear in the density fluctuations, while 
the latter describes the effects of nonlinear coupling between the density fluctua-
tions. Finally, the term (2.21d) accounts for the coupling between the density fluctua-
tions and the external potential.

2.2.1 � DENSITY–DENSITY RESPONSE FUNCTIONS

The dielectric function, ε(k, ω), is defined in terms of the linear response relation 
between the external and induced potentials, Φext(k, ω) and Φind(k, ω), expressed as
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The potential induced by the presence of the external potential is then given in 
terms of the induced density fluctuations,
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	 =åc w wst t t

t

( , ) ( , ).k kZ eFext 	 (2.24b)

In (2.24a), <···> means a statistical average over the states of the plasma. Equation 
(2.24b) defines the density–density response functions, χστ(k, ω), between particles of σ 
and τ species.
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The dielectric function defined by (2.23) is then calculated as
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2.2.2 � CORRELATIONS, RADIAL DISTRIBUTIONS, 
AND STATISTICAL THERMODYNAMICS

With the aid of the density–density response functions formulated in the preced-
ing section and the fluctuation–dissipation theorem summarized in Appendix III, the 
dynamic structure factors Sστ(k, ω), the static structure factors Sστ(k), and the radial distribu-
tions gστ(r) are calculated as
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These functions describe the two-particle distributions in various versions and 
play the essential parts in formulating the equations of state, thermodynamic func-
tions, and transport properties.

As for the thermodynamic functions in multi-ionic plasmas, the interaction energy 
per unit volume is given by
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a counterpart to analogous quantity in (2.10).
The excess Helmholtz free energy per unit volume is then calculated with the cou-

pling-constant integration of (2.29) as
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h

h
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( ).	 (2.30)

Here Uint(η) refers to the interaction energy (2.29) evaluated in a system where the 
strength of Coulomb coupling e2 is replaced by ηe2.

The excess pressure is given by
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where V is the volume and Nσ = nσV.
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2.2.3 � SPIN-DENSITY RESPONSE

The density–density response formalism of Sec. 2.2.1 may be transformed into a 
description of the spin-density responses for the electron system as follows: Let an 
external magnetic field, Hext(k, ω)exp[i(k·r−ωt)], be applied to the electron system in 
an arbitrary direction, which will then induce spin-density fluctuations δnσ(k, ω). The 
spin susceptibility, χs(k, ω), is defined in accordance with

	 − −[ ] =↑ ↓
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n n HB sµ
δ ω δ ω χ ω ω

2
( , ) ( , ) ( , ) ( , ),k k k kext 	 (2.32)

where g = 2.0023 is the g-factor and μB = eħ/2mc is the Bohr magneton. Since (2.24b) 
may be re-expressed in these circumstances as
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Spin-dependent, two-particle distribution functions can be calculated in terms of 
those spin-dependent response functions with the aid of the fluctuation–dissipation 
theorem (Appendix III) in the way analogous to (2.26)–(2.28).

2.2.4 � THE HARTREE–FOCK APPROXIMATION

The density–density response functions of Sec. 2.2.1 may be calculated through a 
solution to the equation of motion (2.21), which governs the evolution of the den-
sity-fluctuation excitations in the electron system in the presence of the external 
Hamiltonian (2.18).

In the Hartree–Fock approximation, Coulomb-interaction terms (2.21b) and (2.21c) are 
ignored in the calculation of the response functions. In this approximation, the den-
sity responses are decoupled between different species and take a form,
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where the free-electron polarizability of the σ species is given by
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with the Fermi distribution
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Here
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is the kinetic energy of an electron and μσ is the chemical potential for the free-elec-
tron system of the σ species, which is determined by the normalization,
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with nσ denoting the number density of the spin-σ electrons.
In the treatment of a free-electron system at a finite temperature, it is useful to 

define the Fermi integrals,
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Mathematical properties of the Fermi integrals are summarized in Appendix IV.  
When the electron system is in the ground system (T = 0), the Fermi distribu-
tion takes a step function; Equation (2.36) evaluated in these circumstances is 
called the Lindhard polarizability (Lindhard, 1954; Pines & Nozières, 1966). In the 
classical limit of high temperature and low density, the Fermi distribution (2.36) 
approaches the Maxwell–Boltzmann form (1.29) and then (2.36) becomes the Vlasov 
polarizability (Vlasov, 1967; Ichimaru, 1973); we shall revisit this classical version in  
Sec. 3.3.

2.2.5 � THE RANDOM-PHASE APPROXIMATION

The random-phase approximation (RPA) (Bohm & Pines, 1953), which we have intro-
duced in Sec. 1.3.5, is an approach that goes beyond the Hartree–Fock approximation. 
In the RPA, one takes account of the Coulomb interaction, neglected in the Hartree–
Fock approximation, through the mean field term (2.21b); the nonlinear coupling term 
(2.21c) between the density-fluctuation excitations remains neglected.

Since the mean field term is linear in the fluctuations, the RPA density–density 
response functions are calculated as
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where
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is the RPA dielectric function.
For an electron system in the ground state, the static (i.e., ω = 0) values of the 

Lindhard polarizability are evaluated as
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where

	 k nFs sp= ( )6 2 1 3/
	 (2.44)

is the Fermi wavenumber appropriate to the fermions of the σ species. In the limit of long 
wavelengths, the static RPA screening function, given by ε0(k, 0), is then expressed as
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which defines the Thomas–Fermi screening parameter kTF.
For high-temperature and low-density classical plasmas, the static (i.e., ω = 0) val-

ues of the Vlasov polarizability are evaluated as
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The static RPA screening function is therefore expressed as
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which defines the Debye–Hückel screening parameter kD, as in (1.32).

2.2.6 � COLLECTIVE VERSUS INDIVIDUAL-PARTICLES 
ASPECTS OF FLUCTUATIONS

The collective versus individual-particles aspects of fluctuations described in Sec. 
1.3.5 can be most succinctly described in terms of the dielectric response function, ε(k,ω). 
It is a linear response function as an externally applied potential Φext(k,ω) may induce 
a potential Φind(k,ω) introduced through (2.23); the resultant total potential field 
Φtot(k,ω) (= Φext(k,ω) + Φind(k,ω)) may then be expressed as
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	 F Ftot extk k k, , / , .w w e w( ) ( ) ( )= 	 (2.48)

The zeros of the dielectric response function, determined from ε(k,ω) = 0 on the 
complex ω-plane, that is, ω = ωk + iγk, give the frequency dispersion and the lifetime of 
the collective mode.

In an electron OCP, density fluctuations of individual electrons moving in trajecto-
ries, rj(t) = rj + vjt, are expressed as

	 r w p d(w );j j ji( )( , ) exp( )0 2k k r k v= - × - × 	 (2.49a)

those of the dressed electrons may then be given by

	 r w r w e wj
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j
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In RPA, where collisions between dressed particles are negligible, the dynamic 
structure factor (2.26) may be evaluated by superposition of the dressed test charges as 
(Rostoker & Rosenbluth, 1960: Ichimaru, 1962)
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	 (2.50)

Here, the expression
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is applicable to a non-equilibrium situation such as a beam-plasma system, with f(v) 
denoting the single-particle velocity distribution; the expression
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is applicable to a plasma in thermodynamic equilibrium at temperature T, where the 
Maxwellian (1.29) applies.

2.2.7 � STRONG COUPLING EFFECTS

In the RPA of the previous sections, the strong exchange and Coulomb coupling 
effects represented by the nonlinear term (2.21c) of the fluctuations have not been 
taken into consideration. A theoretical method of going beyond such an RPA 
description and thereby accounting for the strong inter-particle correlation effects 
rigorously in the framework of the dielectric formulation has been provided by a 
polarization potential approach (Pines, 1963; Ichimaru, 2004b), which we shall sum-
marize in this section.
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We first note that the density responses stemming from the solution to (2.21a–d) 
may be written in this approach as

	 d w c w w w ds s s s s t st tn Z e Z Z v k G n( , ) ( , ) ( , ) ( ) ( , ) (( )k k k k k= + -[ ]0 1Fext ,, ) .w
t
å

ì
í
ï

îï

ü
ý
ï

þï
	 (2.52)

This relation thus implies that the induced density fluctuations, δnτ(k, ω), of the 
particles of the τ species may produce an effective potential field of the strength

	 Z e Z Z v k G ns st s t st tw w d wFpol ( , ) ( ) ( , ) ( , ),k k k= -[ ]1 	 (2.53)

which acts on the particles of the σ species; Fst wpol ( , )k  in (2.53) may be looked upon 
as a polarization potential in these circumstances. Such a polarization potential 
generally differs from the RPA mean field, ZσZτv(k)δnτ(k, ω), since the exchange and 
Coulomb correlations between the particles in effect modify the potentials due to the 
induced space charges. The differences are measured by the dynamic local-field correla-
tions Gστ(k, ω) in (2.53), which originates from the nonlinear term (2.21c) in the equa-
tion of motion for the density-fluctuation excitations. The density–density response 
functions may then be calculated explicitly from the solution to (2.52) in accordance 
with (2.24b).

In certain cases of the condensed plasma problems, one adopts an approximation 
whereby the dynamic local-field corrections are assumed to be independent of the 
frequency variables and are replaced by their static evaluations,

	 G G Gst st stw w = 0( , ) ( ) ( , ).k k k® º 	 (2.54)

The functions Gστ(k) are called the static local-field corrections, and a theoretical 
scheme of treating the strong coupling effects via Gστ(k) will be referred to as the 
static local-field correction approximation.

Let us now revisit the spin-density responses in such a static local-field approxi-
mation for an electron system in the paramagnetic state, in which

	 n n
n

- ¯= =
2

.	 (2.55)

Since the system is isotropic, it is appropriate to define the local-field corrections 
for parallel and antiparallel spins, Gp(k) and Ga(k), and the total free-electron polariz-
ability χ0(k, ω) via

	 G k G k G kp( ) ( ) ( ),= =-- ¯¯ 	 (2.56a)

	 G k G k G ka( ) ( ) ( ),= =-¯ ¯- 	 (2.56b)

	 c w c w c w0
0 02 2( , ) ( , ) ( , )( ) ( )k k k= =- ¯ 	 (2.57)
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(e.g., Ichimaru, Iyetomi, & Tanaka, 1987).
The dielectric function of (2.25) and the spin susceptibility of (2.32) are then 

given by
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Here,
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In the limit of long wavelengths, these fluctuations are related to the isothermal 
compressibility κT and the static spin susceptibility χP via the thermodynamic sum 
rules treated in Appendix III. Since one defines
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with P, M, and B denoting the pressure, the density of spin magnetization, and the 
strength of the magnetic field, respectively, the compressibility sum rule and the spin-
susceptibility sum rule read
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These sum-rule relations provide a crucial linkage between the dielectric 
formulation and the Landau theory of Fermi liquids (Landau, 1956, 1957; Pines & 
Nozières, 1966). The extension to the regime of finite wavelengths offers an essen-
tial ingredient of the density-functional theory, which we shall consider in the 
next section.
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2.3 � DENSITY-FUNCTIONAL THEORY
Consider a system of Nσ electrons contained in a box of volume V under the influence 
of external potentials ϕσ(r), where σ denotes the spin coordinate. The field operators, 
which are constructed through coherent superposition of the creation and annihila-
tion operators of Sec. 2.1.2, may be expressed as
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The density operators are given by

	 ns s sy y( ) ( ) ( ).r r r= † 	 (2.67a)

We assume that the system of electrons under consideration has a unique, non-
degenerate ground state Ψ. Clearly, then, Ψ is a unique functional of ϕσ(r) and, there-
fore, so are the expectation values of the electron densities,

	 n ns s( ) , ( ) .r r= ( )Y Y 	 (2.67b)

The important conclusion derived by Hohenberg and Kohn (1964) is that ϕσ(r) and 
Ψ, in turn, are uniquely determined by the knowledge of the density distributions, 
nσ(r). This conclusion lays the theoretical foundation to the density-functional theory 
(e.g., Kohn & Vashishta, 1983; Callaway & March, 1984), which we shall summarize 
in this section.

2.3.1 � KOHN–SHAM SELF-CONSISTENT EQUATIONS

The total Hamiltonian operator of the system may be written as a sum of the kinetic, 
internal energy, and external contributions,

	 H H H HKtot int ext= + + ,	 (2.68)

where
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Expectation values, designated by angular brackets, of these contributions and 
therefore the total Hamiltonian are the functionals of the densities, nσ(r). We write, in 
particular,
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where EK[nσ(r)] refers to the kinetic energy of a non-interacting electron system with 
the densities nσ(r) in the ground state, the second is the Hartree interaction term, and 
the remainder, Exc[nσ(r)], is called the exchange and correlation energy. The expectation 
value of the total Hamiltonian is thus expressed as
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Its dependence on the external potentials ϕσ(r) has been denoted explicitly in this 
equation.

In the ground state, the expectation values (2.71) take on the minimal values with 
respect to variations of the densities around themselves, subject to conservation of 
the numbers of the particles,

	 d n Nr rò =s s( ) .	 (2.72)

The resultant Euler equations ensuing from the density-functional derivatives (see 
Appendix V) of (2.71) are
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refer to the total classical potentials,
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are the exchange–correlation potentials defined via the functional derivatives, and μσ are 
the Lagrange parameters associated with the subsidiary conditions (2.72).

The Kohn–Sham self-consistent equations for the single-particle wave functions ψi(r) 
are derived in terms of those potentials as (Kohn & Sham, 1965)
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where

	 v Z e vσ σ σ σφeff tot xc( ) ( ) ( ).r r r= + 	 (2.77)

The self-consistency is enforced via
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where the sum is to be carried out over the Nσ lowest occupied eigenstates.
Analytic theories accounting for the thermodynamic properties of dense plasmas 

are concerned with the derivation of relevant expressions for the local-field correc-
tions, Gστ(k), as explained in Sec. 2.2.7. The local-field corrections can be formulated in 
the density-functional theory extended to the finite temperatures by Mermin (1965).

2.3.2 � THERMODYNAMIC POTENTIALS

The thermodynamic potentials of interacting inhomogeneous plasmas in external 
potentials ϕσ(r) may be expressed as
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Here, F0[nσ(r)] denotes the free energy functional of a free-particle system with 
density distributions nσ(r), and Fxc[nσ(r)] refers to the remaining exchange–correlation 
free energy functional for the interacting system. Assuming that the densities are 
expressed in the form

	 n n ns s sd( ) ( ),r r= + 	 (2.80a)
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with nσ = Nσ/V, δ σ σn n( ) /r � 1, and

	 d nr rò =d s( ) ,0 	 (2.80b)

one finds the Euler equations for minimization of the thermodynamic potential (2.79) 
with respect to the density variations δnσ(r). That is,
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are the exchange–correlation potentials at finite temperatures.
To the lowest order in δnσ(r), the first two terms in (2.81) should be linear in δnσ(r) 

on account of (2.80b), so that one writes

	
d K n K n

Z Z e
n′ − ′ + − ′ +

− ′








∫∑ r r r r r

r r
στ σ στ σ

σ τ

τ

τδ( )( ; ) ( ; ) (0
2

xc  ′′

+ =

r

r

)

( ) .Z eσ σφext 0

	 (2.83)

The kernels, Kst
( )( )0 r  and Kst

xc ( )r , introduced in (2.83), are the second density-func-
tional derivatives of F0[nσ(r)] and Fxc[nσ(r)] around nσ(r) = nσ; they depend only on r−r′ 
and nσ, the average number densities. The spatial Fourier transformation of (2.83) 
yields
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Here, for example,

	 �Kst s st s
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Equation (2.84) is a relation for the static linear response in the plasma. Direct 
density-functional calculations and comparison with (2.35) and (2.52) yield
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where Gστ(k) are the static local-field corrections defined in (2.54). Hence, we may find 
(2.84) as equivalent to (2.52) in the static local-field approximation.

2.4 � COMPUTER SIMULATION METHODS
There exist a number of computer simulation methods that aim at studying the inter-
particle correlations and thermodynamic properties of plasmas based on the fun-
damental principles of statistical physics. This section summarizes some of those 
approaches.

2.4.1 � MONTE CARLO APPROACHES

A Monte Carlo (MC) method is any method making use of random numbers to solve 
a problem (James, 1980). The power of the MC method lies basically in its ability to 
carry through multidimensional integrations through the techniques of importance 
sampling with improved accuracy as well as with increased capacity of modern com-
puters (e.g., Binder, 1979, 1992).

In the Metropolis algorithm (Metropolis et al., 1953), one works with a statistical 
ensemble at a constant temperature, volume, and number of particles, that is, the 
canonical ensemble. Monte Carlo steps (configurations) are generated by random dis-
placements of particles in the many-particle system under study. Configurations so 
created will be accepted or rejected with the probability of acceptance:
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where ΔE denotes the energy increment created by the displacements. A Markov 
chain representing the canonical ensemble is thereby generated, with its thermaliza-
tion usually monitored through evaluation of the internal energy. The probability 
(2.88) may thus lead the system to one with a canonical distribution at temperature T. 
In their pioneering work, Brush, Sahlin, & Teller (1966) performed numerical experi-
ments on strongly coupled OCPs by such an MC method.

2.4.2 � MOLECULAR DYNAMICS SIMULATIONS

In the method of molecular dynamics (MD), pioneered by Alder and Wainwright (1959), 
the classical equations of motion for a system of interacting particles are solved 
by integration in discrete time steps; equilibrium properties are determined from 
time averages taken over a sufficiently long time interval (e.g., Ciccontti, Frenkel, & 
McDonald, 1987; Yonezawa, 1992).

In the MD simulation, one thus works with the microcanonical ensemble, in which the 
total energy, volume, and number of particles are kept constant; the MD methods are 
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therefore deterministic in principle. There exist provisions (Andersen, 1980; Hoover 
et al., 1980; Nosé & Klein, 1983) in the framework of the MD method that can simulate 
isothermal and/or isobaric ensembles.

In the approach proposed by Car and Parrinello (1985), dynamic aspects of an 
MD method are accommodated in the treatment of simulated annealing for a quan-
tum many-body system through a density-functional theory described in Sec. 2.3. In 
these connections, we take it essential that the self-consistency in the formulation and 
application of the Kohn–Sham equations (2.76) be strictly maintained. These require-
ments include accounting of the dynamic polarization potentials (2.53) and/or the 
exchange–correlation potentials (2.75) in the simulations.

2.4.3 � OTHER APPROACHES

Quantum many-body problems may likewise be approached through a number of 
other computer techniques (e.g., Ceperley & Kalos, 1979; Binder, 1979, 1992; Yonezawa, 
1992).

In the variational MC method (McMillan, 1965), one calculates an expectation value,
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of the N-particle Hamiltonian, H(R), with a trial wave function, ψT(R), through multi-
dimensional MC integrations, where

	 R r r= ( )1 , ,� N 	 (2.90)

refers to the coordinates of the N particles.
Variational trial functions for a system of fermions are sometimes chosen in a form 

of a Jastrow (1955) type,
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where ψ0(R) is the ideal Fermi gas wave function and u(rij) corresponds to a varia-
tional “pseudopotential” accounting for inter-particle correlation with rij = |ri − rj|.  
A solution to the Schrödinger equation,

	 H ER R R( ) ( ) ( )=y y , 	 (2.92)

is obtained for the ground state by minimizing the energy ET of (2.89) through varia-
tions of the trial functions.
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In Green’s Function Monte Carlo (GFMC) method (e.g., Ceperley & Kalos, 1979), one 
seeks an integral formulation of the Schrödinger equation and considers Green’s 
function for the left-hand side of (2.92), that is,
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Here the Hamiltonian has been split into the kinetic and potential energy con-
tributions and -V0 refers to a minimum of V(R). It is then possible to devise an MC 
method, in a general sense of a random sampling algorithm, that produces popula-
tions drawn from the successive ψ(n)(R) generated by

	 y y( ) ( )( ) ( ) ( , ) ( ).n nE V d+ = + ¢ ¢ ¢ò1
0R R G R R R 	 (2.94)

As the iterations converge, a solution to the Schrödinger equation may be obtained.
Ceperley and Alder (1980), in particular, have calculated the ground-state energy 

of the electron plasma by the GFMC method. Progress in the computer simulation 
studies on the properties of hydrogen and helium under extreme conditions has been 
extensively reviewed (McMahon et al., 2012).
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3
SCATTERING OF 

ELECTROMAGNETIC WAVES
Scattering of electromagnetic waves is a useful way by which one studies fluctuations 
and correlations in the plasmas. To elucidate the principles of such approaches, we 
begin with an evaluation of the cross-sections of individual and correlated charged 
particles against scattering of electromagnetic waves. We then proceed to look into 
the radar backscattering experiments that demonstrate those collective processes in 
the ionosphere.

3.1 � SCATTERING BY INDIVIDUAL PARTICLES
Consider an electron with electric charge -e and mass m located in the plane-wave 
electromagnetic field, whose electric field is expressed as

	 E r E k r( , ) cos( ).t t= × -1 1 1w 	  (3.1)

The quantities ω1 and k1 satisfy ω1/k1 = c, where c = 2.9978 × 1010 cm/s is the light veloc-
ity in vacuum. The electron and its dipole moment d obey the equation of motion,
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Since the rate of energy emitted by an electric dipole is 2 3
2 3��d / c , the emission rate 

from the electron subjected to the electromagnetic field (3.1) is calculated as
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3.1.1 � CROSS-SECTION OF THOMSON SCATTERING

The incident electromagnetic wave carries a total energy density of E2/4π, since the 
electric field and the magnetic field carry the same amount of energy density E2/8π. 
The energy flux of the incident wave is (E2/4π)c, and so we find from (3.2) the scatter-
ing cross-section of an electron is
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The quantity is called the cross-section of Thomson scattering.
As may be clear in (3.3), the scattering cross-section is inversely proportional to the 

square of the mass. In an ordinary gaseous plasma, the mass of an ion is at least 1837 
times that of an electron; thus, the cross-sections of electrons are predominant, as far 
as scattering of electromagnetic wave is concerned.

If the electromagnetic waves scattered by individual electrons do not interfere 
with each other, that is, if the correlation effects between electrons are negligible, 
the total cross-section of the plasma against scattering of the electromagnetic wave 
is proportional to the number of electrons in the scattering volume. In these circum-
stances, one can deduce the electron density from a measurement of the total inten-
sity of scattered waves.

3.1.2 � DOPPLER EFFECT

We have thus found that the total cross-section of an electron against scatter-
ing of  the electromagnetic wave is given by the cross-section (3.3) of Thomson 
scattering. Generally, however, the frequency of the scattered wave differs from 
that of the incident wave due to the Doppler effect associated with the motion of 
electrons.

Let v be the velocity of an electron in the laboratory system (see Figure 3.1). As we 
find by substituting the orbital r = r(t = 0) + vt of the electron motion in (3.1), the elec-
tron perceives ω′ = ω1 - k1·v as the frequency of the incident wave. Such a motional 
change of the frequency is called the Doppler effect. The electron with the velocity 
v thus emits an electromagnetic wave with frequency ω′ on its own frame of refer-
ence. Then, we, in the frame of reference fixed to the laboratory system, observe 
radiation emitted in the direction of the wave vector k2. With the aid of Doppler’s 
relation once again, we find the frequency of the scattered wave at ω2 = ω′ + k2·v. 
Consequently, a frequency shift takes place between the incident and scattered 
waves with a magnitude,

	 w w2 1 2 1- = × -v k k( ).	  (3.4)
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If the incident wave is monochromatic with the frequency ω1, the frequency ω2 of the 
scattered wave exhibits a characteristic spread corresponding to the velocity distri-
bution of the electrons. For a Maxwellian distribution (1.29) with temperature T, the 
frequency spectrum of the scattered wave thus takes the form as shown in Figure 3.2 
where

	 w= w w2 1- ,	  (3.5)

	 k k k= -2 1 ,	  (3.6)

and M = m. In these circumstances, the electron temperature can be determined from 
the spread in the frequency spectrum of the scattered waves. Equations (3.5) and (3.6) 
correspond to the conservation laws of energy and momentum in the event of such 
scattering.

FIGURE 3.1  Scattering of electromagnetic wave by an electron.

FIGURE 3.2  Frequency spectrum of individual-particle-like density fluctuations.
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3.2 � INCOHERENT SCATTERING BY CORRELATED PARTICLES
Let us now proceed to consider the effects of correlations between electrons on the 
cross-sections against incoherent scattering of the electromagnetic waves.

We designate, as specified in Figure 3.3, the wave vector k and the frequency ω of 
the incoming and outgoing electromagnetic waves as (k1, ω1) and (k2, ω2). The inten-
sity of the wave scattered from an infinitesimal volume element dr1 around r1 is pro-
portional to ρ(r1, t) dr1, where ρ(r, t) represents the electron density in the plasma at r 
and t – cf. (1.22). Since ρ(r, t) is a fluctuating stochastic variable, the scattered wave also 
carries stochastic amplitude modulations as

(amplitude modulation on the wave scattered at r1 and t1)

	 ∼ d t i i t
V

r r k k r∫ − ⋅ − −[ ]ρ ω ω( , )exp ( ) ( )1 1 1 2 1 1 2 1 	  (3.7)

We then carry out a spectral decomposition for the mean-square average of the sto-
chastically fluctuating fields (3.7):
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Assuming that the plasma in the scattering volume V is uniform and stationary, we 
may take the space-and-time correlation function r rr r1 1 2 2, ,t t( ) ( )  of the density 
fluctuations as a function of only the variables, r1−r2 and t1−t2. In terms of the Fourier 
components, we then express
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The spectral function S(k, ω) of the electron-density fluctuations introduced in (3.9) is 
the dynamic structure factor; it is the same as (2.6) presented earlier.

Consideration of (3.7) combined with (3.9) may convince us that the differen-
tial cross-sections of the plasma against scattering of the electromagnetic wave is 
expressed in a form proportional to S(k, ω) with the aid of (3.5) and (3.6). The constant 
of proportionality may then be determined through the way that the cross-section of 
Thomson scattering has been evaluated in Sec. 3.1.1.

The differential cross-section for incoherent scattering into a solid angle do and a 
frequency interval dω, as portrayed in Figure 3.3, is thus expressed in the formula as
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Here k = k2 – k1, ω = ω2 – ω1, θ is the angle between the incident and scattered waves, 
and we have averaged over directions of polarization of both waves (e.g., Ichimaru, 
1973). Scattering of electromagnetic waves thus provides a unique way of monitoring 
electron–electron density correlations in the plasma.

3.3 � RADAR BACKSCATTERING FROM THE IONOSPHERE
Around the year 1960, a series of experiments were performed to probe the state of 
the ionospheric plasmas through backscattering of radar pulses. It was originally 
conceived that the time-dependence of the scattered signal would reveal directly the 
electron density and temperature profiles as functions of the altitude. Unexpectedly, 
however, the measured results revealed collective features in the ionospheric plas-
mas. It was particularly notable that the observed spectrum of scattered waves car-
ried a strong influence of the ionic motions despite the fact that the electrons were the 
scatterers. Let us therefore study the features of inter-particle correlations specific in 
electrons-and-ions, two-component plasmas.

3.3.1 � OBSERVATIONS BY BOWLES

For a first example of scattering experiments that demonstrate correlation effects in 
plasmas, let us take up radar backscattering from the ionosphere, as carried out by 
Bowles of the National Bureau of Standards (NBS) (Bowles, 1958, 1961); it is the experi-
ments particularly mentioned in the first paragraph of the Rosenbluth and Rostoker 
(1962) scattering paper.

The F-layer of the ionosphere, consisting of electrons and ions (mostly oxygen), 
extends from 200 to 500 km in altitude; the average number densities are around 
105–106 cm−3 at temperatures about 1500 K. Assuming the maximum electron den-
sity to be around 2 × 106 cm−3, we find the corresponding plasma frequency at 12.7 
MHz. This is the critical frequency for the propagation of electromagnetic waves in 
the plasma; waves with frequencies less than that will be reflected by the F-layer.  

FIGURE 3.3  Incoherent scattering of electromagnetic waves.
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An electromagnetic wave with a frequency exceeding the critical frequency, on the 
other hand, propagates through the F-layer; only a tiny fraction is scattered by the 
electrons and sent back to the earth’s surface.

The radar backscattering experiments that Bowles carried out in 1958 utilize radar 
pulses at frequency 42.92 MHz, pulse-width 120 μs, repetition frequency 25~40 per 
second, and peak power 1 MW. Since the radar frequency is far greater than the 
plasma frequency at 13 MHz, the ionosphere is transparent to those radar pulses and 
backscatters them at strengths proportional to the local densities of electrons. The 
density profile so observed is shown in Figure 3.4.

We expect the backscattered waves would be broadened, on top of a 9 kHz spread 
in the radar frequencies, by a width of 82 kHz with the thermal motion of the elec-
trons (at T = 1500 K) as in (2.51b) as well as in Figure 3.2. To detect such a spectral 
broadening, the receiver’s bandwidth was fixed at 9 kHz.

When the central frequency of the receiver was set at the outgoing radar frequency, 
a signal with a maximum strength was obtained. When it was shifted by 15 kHz rela-
tive to that radar frequency, however, virtually no signals were observed. This casts an 
enigma since it might mean no broadening caused by the scatterers.

3.3.2 � OBSERVATIONS BY PINEO, KRAFT, AND BRISCOE

To look into the features of broadening more closely, Pineo, Kraft, and Briscoe (1960) 
of MIT two years later performed analogous experiments, in which, however, the out-
going radar frequency was raised to 440 MHz, almost an order of magnitude greater 
than that used by Bowles. Frequency spectrum of the backscattered waves has now 
become detectable, as in Figure 3.5; we here find that the broadening does actually 
take place correspondingly, however, to the thermal motion of the ions.

FIGURE 3.4  Radar-backscattering measurement of the ionospheric electron distribution as a 
function of the altitude [1959 Feb. 27, 7:40 p.m. – Illinois local time]. After Bowles (1961).
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Now, in these experiments, we recognize that the wave number k (= 2k1) relevant 
to backscattering is much smaller than the Debye wave number kD of (1.32), meaning 
that we are in the collective regime where effects of the correlation are predominant.

In the present case of electron-and-ion, two-component plasmas, the features of the 
collective versus individual-particles aspects of the fluctuations have to be substan-
tially altered from those with the electron one-component plasma (OCP) described 
in Secs. 1.3.4 and 1.3.5.

First, the presence of “dressed” ions should be noted. Coulomb potential around 
an ion is screened by co-moving clouds of electrons at half the strength and the 
remaining half stems from repelled ions. The observed spectrum in Figure 3.5 may 
be interpreted as coming from scattering by those electrons co-moving with ions. 
These features will further be explained in Sec. 3.4.2.

We must also note the appearance of a new collective mode, called the ion-acous-
tic waves that may affect features of the electron-density fluctuations. These will be 
treated in Sec. 3.4.4.

3.4 � COLLECTIVE PHENOMENA IN ELECTRON-
AND-ION PLASMAS

In the present case of ionospheric plasmas, which are of two components, collec-
tive oscillations likewise consist of two modes, optical and acoustic. For the treatment 
of those collective modes, we thus extend the dielectric formulations of Sec. 2.3 to 

FIGURE 3.5  Spectral distribution of backscattered wave from ionosphere (approximately 300 
km in altitude) (Pineo, Kraft, & Briscoe, 1960).
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two-component plasmas, in which we use the subscript “e” for the electrons and the 
subscript “i” for the ions; for simplicity, we assume the charge number Z of an ion to 
be unity, and ne = ni = n.

In this section, we are concerned with a situation close to the thermodynamic 
equilibrium, so that the velocity distributions are given by the Maxwellian,
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In so doing, we are assuming the possibility that the temperatures of the electrons 
and the ions may be different.

In these connections, we note that the relaxation times for Maxwellization of 
electrons and of ions and for temperature equality are in the approximate ratios 
(Ichimaru, 1973),

	 τ τ τee ii ei i e i em m m m: : : / : / ./  ∼ 1 1 2( ) 	  (3.12)

Since we may take mi/me ≫ 1 generally for plasmas, use of Maxwellians with unequal 
temperatures may be looked upon as reasonable; we find such an unequal tempera-
ture plasma in the glow discharges, for instance.

3.4.1 � DIELECTRIC RESPONSE FUNCTION

The dielectric response function in the random-phase approximation (RPA) for the 
Maxwellian plasma is then calculated as

	 e w w
w h

s s

s

( , )
( )

k v
k v

k
v

v
= -

× - -
×
¶
¶òå1

12

2k
d

i
f

	  (3.13)

with
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Here the positive infinitesimal η serves to assure the adiabatic turning on of the dis-
turbance and thereby to guarantee a causal response of the system; we let η → +0 even-
tually (Ichimaru, 1973).

We now substitute (3.11) in (3.13) to obtain
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with
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Here the W function is the error function of a complex argument (Fried & Conte, 1961; 
Ichimaru, 1973):
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For |Z| < 1, it can be expressed in a convergent series,
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where
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For large Z, we have an asymptotic series
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3.4.2 � DRESSED PARTICLES

Let us now revisit (2.27) in Sec. 2.2.1, and evaluate in particular the electronic static 
structure factor, Se(k), in a two-component plasma, given by and calculated as 
(Ichimaru, 1962)
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Assuming ke = ki, one finds Se = 1/2 in the long-wavelength domain satisfying  
k2 ≪ ke

2. It is noteworthy that this value differs markedly from that evaluated for the 
electron OCP (e.g., Ichimaru, 1973):
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which vanishes as k → 0.
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Interpreted physically, the limiting value 1/2 with (3.20a) stems from the contri-
bution of those electrons participating in the screening of individual ions. Since the 
static screening effects of electrons and ions are the same, the “dress” of an ion is a 
50–50 mixture of electrons and other ions.

Those electrons, which form the correlated screening clouds of ions, carry the total 
cross-section as much as a half of the Thomson scattering cross-section of individual 
electrons even in the long-wavelength domain of k2 ≪ ke

2. These may offer the expla-
nation to Figure 3.5.

3.4.3 � ION-ACOUSTIC WAVES

The observational results exhibited in Figure 3.5 may also suggest a trace of another 
collective mode, ion-acoustic waves, in the two-component plasmas. We thus inves-
tigate the collective modes in the long-wavelength regime, k2 ≪ ks2, for electron–ion 
plasmas, setting the solution to ε(k,ω) = 0 as ω = ωk + γk.

In the high-frequency regime such that

	 ω � �k k T m k k T mB e e B i i/ / , 	  (3.21)

the dielectric response function (3.15) may be expressed with the large Z expansion 
(3.19) for both electrons and ions; we thus find
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This is basically a space-charge wave of electrons, in a uniform, positive-charge back-
ground of ions; it represents the optical mode of the plasma oscillation.

In the intermediate-frequency regime such that
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the dielectric response function (3.15) may be expressed with the small Z expansion 
(3.18) for electrons and with the large Z expansion (3.19) for ions; we thus find
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This is the acoustic mode of plasma oscillations representing the density waves of 
electron-screened ions. These acoustic waves in the ionosphere, however, are strongly 
damped since the temperature of the electrons is almost equal to that of the ions, or 
Te ≃ Ti; hence, only a mild hump has been observed in Figure 3.5 as a trace suggesting 
of this corrective mode.

If, however, one considers the plasma with Te ≫ Ti, then the ion-acoustic waves, 
ωk = sk, with the sound velocity,

	 s k T mB e i= / ,	  (3.26)

become well-defined, relatively undamped oscillations with the decay rate γk, given by

	
g
w

pk

k

e

i

m
m

=
8

. 	  (3.27)

Numerically, |γk/ωk| ≈ 0.015 for a hydrogen plasma. They are the density waves of 
ions interacting mutually via electron-screened, short-ranged Coulomb forces, analo-
gous to the phonons in ordinary materials.

Finally, on the basis of the foregoing considerations, let us review the experi-
ments by Pineo et al. in Sec. 3.3.2. For a hydrogen plasma with Te ≈ 1500 K, we find 
s ≈ 3.5 × 105 cm/s from (3.26). Since k = 2k1 = 0.18 cm−1 and ke = 5.3 cm−1 from (3.16), we 
confirm k2 ≪ ke

2 and the frequency of the ion-acoustic wave is approximately 10 kHz. 
In the case of the ionospheric plasma where oxygen ions are involved, the ion-acous-
tic frequency may take on a value smaller than that. At any rate, those ion-acoustic 
waves suffer severe damping because Te ≃ Ti in the ionosphere and act only to pro-
duce weak shoulder structures as observed in Figure 3.5.

3.5 � PLASMA CRITICAL OPALESCENCE
In the RPA, the dynamic structure factor of the electrons for the electron–ion plasma 
may be simply obtained by superposing the fields due to the dressed particles 
(Ichimaru, Pines, & Rostoker, 1962); the result is
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are the polarizabilities of electrons (e) and ions (i); f vs( ) are the one-dimensional nor-
malized velocity distribution functions in the directions of k.



 50        Statistical Physics of Dense Plasmas﻿

Drift motion of the electrons relative to the ions acts to excite the ion-acoustic 
waves. If one passes to a sufficiently large value of the drift velocity Vd, the ion‑
acoustic waves become unstable; the boundary between growing and damped waves 
is specified by

	 Im ( , ) ,e wk k = 0 	  (3.30)

where ωk is determined by

	 Re ( , ) .e wk k = 0 	  (3.31)

Since S(k,ω) in (3.28) is proportional to 1/|ε(k,ω)|2, one finds a contribution from the 
immediate vicinity of ωk, which is

	 S kres ( ) /Im ( , ).k kµ 1 e w 	  (3.32)

For the case of marginal stability, defined by (3.30), Sres(k) obviously diverges.
We have carried out an explicit evaluation of Sres(k) for the case that Te ≫ Ti, such 

that the waves close to k = 0 are the first to grow as one increases Vd. The result is 
(Ichimaru, Pines, & Rostoker, 1962)
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where V k T me B e e= / , V sc @ , χ is the angle between k and Vd, and
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The result (3.33) is valid for k2 ≪ ke
2.

We remark that (3.33) is identical in analytical form to the results obtained for the 
critical fluctuations in the vicinity of a liquid-gas phase transition, or the critical opal-
escence (Landau & Lifshitz, 1969).

3.6 � OBSERVATION OF PLASMA WAVES 
IN WARM DENSE MATTER

Rader backscattering from the ionosphere described in Sec. 3.3 and the plasma criti-
cal opalescence treated in Sec. 3.5 are concerned with observation of the collective 
phenomena in plasmas.
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X-ray Thomson scattering techniques have likewise been employed for observation 
of collective modes in warm dense matter (Glenzer et al., 2007). The measurements 
were performed in solid-density beryllium target that had been heated isochorically 
with a broadband X-ray source into a state of dense plasma with weakly degenerate 
electrons. The collective scattering regime of the plasma, that is, k ≪ kD in (3.10), was 
then approached through forward scattering (i.e., θ ≪ 1) of the narrow-band chlorine 
Ly-α X-ray line at 2.96 keV.

The characteristic peak associated with the collective plasma oscillations (e.g., 
Ichimaru, 1973) has thereby been observed in agreement with the theoretical 
responses, in which the collisional effects have been appropriately taken into account.
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4
CHARGED PARTICLES OR 

X-RAYS INJECTED IN PLASMAS
The fundamental properties of the plasmas can be investigated by means of the 
scattering of incident X-ray or particle beams. The spectrum of electron-density 
fluctuations such as the plasma oscillations can be monitored through the energy-
loss spectroscopy in the transmission experiments. It is also possible to probe the 
microscopic features of electron correlation through the injection of molecular-ionic 
beams into metal. We here begin with a consideration of the properties of electron 
plasmas in metal, which can be detected by those scattering methods.

4.1 � CHARACTERISTIC ENERGY-LOSS SPECTROSCOPY
The X-ray scattering spectroscopy is schematically illustrated in Figure 4.1. The char-
acteristic X-rays of a metal are usually employed as the incident X-rays. For example, 
the Ka2  line of copper has the energy 8.052 keV; the Ka2  line of copper has the 
energy 8.031 keV (1,544 Å in wavelength) and the natural width 3.5 eV. Transmitting 
such X-ray into a thin metallic plate, one measures the spectral distribution of the 
scattered X-ray with an angle q  relative to the incident direction. The differential 
cross-section of scattering is given by (3.10); the energy and momentum of the inci-
dent X-ray, �w1  and �k1 , and those of the scattered X-ray, �w2  and �k2 , are con-
nected via (3.5) and (3.6).

The difference �w  between the incident and scattered X-rays coincides with the 
energy of density-fluctuation excitations in the electron plasma. The plasma oscilla-
tion is a typical example of such collective excitations. Its quantum, called a plasmon, 
has the energy

	 �wp sr= [ ]-47 1 3 2. ,/ eV 	 (4.1)

Statistical Physics of Dense Plasmas Charged Particles or X-Rays Injected in Plasmas
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where rs is the density parameter introduced by (1.4).
Although this expression does not take into account any effective-mass correction 

to the metallic electrons or the dielectric constant of the ionic lattice, we may approxi-
mately estimate �wp = -3 2 16 7. . eV  for electrons at metallic densities (rs = 2–6). The 
numerical examples cited above indicate � � �w w1 p , so that we may take � � �w w1 2.  
Hence, for q� 1 ,

	 k c= ( / )w q.1 	 (4.2)

In these transmission-scattering experiments, one can alternatively use a beam of 
mono-energetic electrons (electron energy-loss spectroscopy) instead of the X-ray. In 
this case, a metal foil with a thickness of around 103 Å is used; its differential cross-
section of scattering takes a form analogous to (3.10), i.e.,
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(e.g., Pines, 1963). Denoting by p1, E1, p2, and E2 the momenta and energies of the 
incident and scattered electrons, we have relations corresponding to (3.5) and (3.6) as

	 �w= -E E2 1 , 	 (4.4)

	 �k p p= -2 1. 	 (4.5)

These relations connect between the energy and momentum of the incident and the 
excitation energy �w  and momentum �k  of the density fluctuations.

In an actual experiment, the energy range of 20–300 keV is used for E1; hence, as in 
the case of X-ray scattering, one can take E1 ≃ E2. For θ ≪ 1, one thus has

	 k mE= 1
2 1

�
q. 	 (4.6)

FIGURE 4.1  X-ray (electron) transmission-scattering spectroscopy.
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The energy resolution of the scattered particles, depending on the experiment, is usu-
ally 0.1–1 eV.

4.2 � PLASMON DISPERSION
Figure 4.2 shows an example of the energy-loss spectrum measured in an electron 
transmission experiment (Gibbons et al., 1976). The sample is aluminum foil with 
thickness 1100 Å. As we have noted earlier in Sec. 1.2.2, aluminum has rs = 2.1 and 
�wp  = 15.5 eV by (4.1). The peak energy is observed to increase with the wave number; 
the dispersion relation of the plasma oscillation can be determined experimentally 
through such an observation. One can likewise estimate the decay rate of plasma 
oscillation from the half width of the peak structure.

Theoretically, as we have argued in Sec. 2.2.6, the zeros of the dielectric response 
function, determined from ε(k,ω) = 0 on the complex ω-plane, that is, ω = ωk + iγk, give 
the frequency dispersion and the lifetime of the collective mode. In the static local-field 
correction approximation of Sec. 2.2.7, the dielectric function for the paramagnetic elec-
trons has been expressed as Eq. (2.58), where the free-electron polarizability is given by

	 c w
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FIGURE 4.2  Electron energy-loss spectra of aluminum at various momentum transfers 
(Gibbons et al., 1976).
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Here the momentum distribution function f(p) takes on values
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representing the Fermi-sphere distribution with the Fermi wavenumber kF = (6π2n)1/3 
for the metallic electrons; the electrons assume the maximum velocity vF = � kF/m on 
the Fermi sphere.

In the random-phase approximation (RPA) of Sec. 2.2.5, one ignores the strong-
coupling effects such as the local-field corrections in (2.58). Assuming |ω/k| ≫ vF, we 
carry out high-frequency expansion of the RPA dielectric function to obtain
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Retaining up to the terms proportional to k2 in the long-wavelength domain (k2 ≪ kF
2), 

we find

	 w wk p Fk2 2 2 23
5

= + n 	 (4.10)

as a solution to Re ε(k,ω) = 0.

4.2.1 � PLASMON DISPERSION COEFFICIENT

We define the plasmon dispersion coefficient α by expressing the measured plasmon 
energy as a function of the scattering angle θ as

	 � �w q w a q( ) .= +p 2 1
2E 	 (4.11)

Since the plasmon wave number and scattering angle are related via (4.6), this equa-
tion implies
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In the RPA, one thus has
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in view of the dispersion relation (4.10).
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4.2.2 � MEASURED VALUES

The measured values of α for various metals are summarized in Figure 4.3 on the 
basis of the data compiled in Excitations of Plasmons and Interband Transitions by 
Electrons (Raether, 1980). The data are scattered rather widely partly because of differ-
ent experimenters and experimental uncertainties.

Nevertheless, the observed results seem to indicate consistent deviations from 
αRPA, which obviously widen as rs increases. Thus, the strong-coupling effects beyond 
the RPA have been demonstrated through these experimental data.

4.2.3 � THEORETICAL ESTIMATES

A number of theoretical attempts have been advanced to account for those deviations 
(Utsumi & Ichimaru, 1981).

An approach takes account of the long-wavelength limit of the static local-field 
correction as

	 lim ( ) ( )( / ) ,
k

s FG k r k k
®

=
0

0
2g 	 (4.14)

FIGURE 4.3  Plasmon dispersion coefficient α divided by RPA value αRPA vs. rs in various 
approximations (Utsumi & Ichimaru, 1981). Solid curve corresponds to the result of Utsumi 
& Ichimaru (1981). Dashed curves I-IV correspond to α0, αTW, α∞, and αNP in Equations (4.15), 
(4.16), (4.19), and (4.20), respectively. The experimental values with open circles and error bars 
are taken from (Raether, 1980).
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and evaluates with the aid of the compressibility sum-rule (2.64) as
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(Singwi et al., 1968).
Obviously, this evaluation depends on rs. Then, taking the Hartree–Fock limit of 

rs → 0 for γ 0( )rs , Toigo and Woodruff (1971) proposed
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The plasma oscillations in metallic electrons being high-frequency phenomena, one 
may rather take the high-frequency and long-wavelength limit of the dynamic local-
field corrections in (2.52), that is, lim ( , ) ( )
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Use of (4.17) in (2.58) then yields the dispersion coefficient
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(Pathak & Vashishta, 1973).
In the Hartree–Fock limit, rs → 0, we then obtain

	 a a
w
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3
80
� p

FE
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(Nozières & Pines, 1958; DuBois, 1959).
In summary, we may conclude that the general trends of the experiments are col-

lectively described by the theories in terms of the strong Coulomb-coupling effects.

4.3 � STOPPING POWER AND WAKE POTENTIAL
Let us now turn to consider energetic ions injected externally into metallic electrons. 
Those ions interact with the electrons and thereby probe the correlation properties in 
the electron plasmas.
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4.3.1 � INDUCED DENSITY VARIATIONS

To begin, we calculate the external potential that an injected ion with an electric 
charge Ze and mass M traveling at a velocity u exerts onto the degenerate electron 
plasma. We assume u to be much greater than the Fermi velocity vF, that is,

	 u vF� . 	 (4.21a)

For a proton, this implies

	 1
2

92 12 2Mu rs� . ( ).− keV 	 (4.21b)

The injected charge produces a potential of external disturbance in the notation of 
Sec. 2.2.1 as

	 Fext ( , ) ( ).k k uw p d w= - ×8 2
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The injected ion induces the electron-density fluctuations δρ(k,ω) in the plasma 
according to (2.24). The space-time distribution of the induced electron-density fluc-
tuations is obtained by carrying out the inverse Fourier transformation of δρ(k,ω) as
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The condition (4.21a) leads to the expansion (4.9) of the dielectric response function, 
of which we retain the leading terms. Adding to it the imaginary part, we express
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where η is a positive infinitesimal.
We calculate (4.23) by choosing the z-axis in the u direction. The integrations with 

respect to kx and ky in (4.23) then produce δ(x) and δ(y).
To carry out the kz integration, we close the contour of integration by an infinite 

semicircle with Im kz > 0 on the complex kz plane when z − ut > 0 (see Figure 4.4). The 
integral pertaining to (4.23) vanishes by virtue of Cauchy’s theorem because no roots 
of ε(k, kzu) = 0 exist on the upper half of the complex plane for (4.24).

For z − ut < 0, on the other hand, we close the contour of integration by an infinite 
semicircle with Im kz < 0. In this case, the residues at the two roots of ε(k, kzu) = 0 in 
the lower half plane contributes to the integration as shown in Figure 4.4.

As a result, we find

	 ρ
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Here, θ(x) is the unit step function
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and

	 l wp pu= / 	 (4.27)

represents the characteristic length corresponding to the distance (=2πλp) over which 
an ion travels in one period of the plasma oscillation.

Equation (4.25) contains a number of remarkable features. First, we note the 
involvement of the step function θ(ut − z): Since ut is the z coordinate of the injected 
ion, the electron density induced by this ion is limited to the domain z < ut behind it; 
the effect does not reach the domain z > ut. This is a manifestation of the principle of 
causality that was mentioned in Sec. 2.2.

The induced electron density thus varies with wavelength and frequency charac-
teristic of the plasma oscillation posterior to the injected ion along the z-axis. This is 
the feature of correlations induced by the ion in the degenerate system of electrons, a 
feature remarkably different from the case treated in Sec. 1.3.2.

We next take up the issue associated with δ(x)δ(y) in (4.25). This function appears 
because we regarded the injected ion as a point charge and calculated electron-den-
sity variations induced by the ion. In the treatment of close encounters between the 
ion and the electrons, one must regard the particles not as classical point charges 
but as those having quantum-mechanical spread. In the center-of-mass system for 
scattering between ion and electron, the reduced mass is that of an electron m; the 
relative velocity is u because of (4.21a). Hence, the relevant momentum is mu with the 
corresponding de Broglie wavelength of �/ mu .

FIGURE 4.4  Contours of kz integration in Eq. (4.23).
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4.3.2 � INDUCED POTENTIAL

The space-charge density (4.25) induced in the plasma produces an electrostatic 
potential associated with it. Taking account of the aforementioned quantum-spread 
around the z-axis, Vager and Gemmel (1976) calculated the potential as
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where R x y= +2 2  is the distance from the z-axis. As (4.28) represents the electrostatic 
potential produced by excitation of plasma waves as an ion travels through the plasma, 
we call it the wake potential. Figure 4.5 illustrates such a wake potential computed from 
(4.28) when a 400 keV proton is injected in a carbon plasma ( �wp = 25 0. eV ).

4.3.3 � STOPPING POWER

As we observe in the gradient of the potential at the position of the ion in Figure 4.5, 
the injected charged particle suffers a retarding force from the wake potential, The 
stopping power of the plasma is then the rate, −dw/dz, at which the injected charged 
particle loses its kinetic energy, w (=Mu2/2), owing to this retardation effect. This rate 
is thus calculated from (4.28) as
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Here lp mu� �/  is assumed, and 2exp(−γ) = 1.123 where γ is Euler’s constant.
Equation (4.29) is the Bethe formula for the stopping power. The logarithmic factor 

contained in it is another example of the Coulomb logarithm mentioned in Sec. 1.3.1.

FIGURE 4.5  Wake potential of a 400-keV proton traversing carbon (�wp = 25 0. eV ). Distances 
are shown in units of 2πλp = 14.5 A (Vager & Gemmel, 1976).
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4.4 � ION CLUSTERS INJECTED IN METALS
Clusters of ions injected in metallic plasmas generate interesting features through the 
wake potential. 

4.4.1  INJECTION INTO THIN FOILS

Consider an experiment in which a beam of molecular ions such as H2
+  with an 

energy of ∼100 keV per nucleon is injected into a metal foil with a thickness of about 
1000 Å (Figure 4.6). The electrons that bind the two protons in H2

+  molecules are 
removed immediately after the molecules enter the metal. The two dissociated pro-
tons repel each other by the Coulomb forces, depart from each other while traveling 
through metal, and leave from the opposite side.

Monitoring the behaviors of those traveling ions, one can neatly monitor the fea-
tures of dynamic correlations among molecular ions, dissociated ions, and metal-
lic electrons. Brandt, Ratkowski, and Ritchie (1974) carried out such stopping-power 
experiments and thereby revealed detailed features of those correlation effects.

4.4.2  ADVANCED WAKEFIELD EXPERIMENT

The Advanced Wakefield Experiment at CERN, Europe’s particle-physics labora-
tory near Geneva, Switzerland, utilized high-intensity proton clusters—in which 
each proton had an energy of 400 GeV—to drive a wake potential in a 10-m-long Rb 

FIGURE 4.6  Ion cluster injected in metal.
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plasma and to accelerate laser-injected electrons by the wake potential up to 2 GeV 
(Adli et al., 2018).

4.5 � X-RAY CRYSTALLOGRAPHY
In the scattering experiments described in Sec. 3.2, if we pay no attention to the fre-
quencies, that is, if we integrate the scattered waves over the frequencies, then the 
differential cross-section of scattering into a solid angle do may be expressed as

	
dQ
do

N
ST= -æ

è
ç

ö
ø
÷

3
8

1
1
2

2

p
s qsin ( ).k 	 (4.30)

Here, the static structure factor S(k) defined as
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corresponds to the spectral distribution of spatial density fluctuations (e.g., Ichimaru, 
1973), that describes spatial density configurations such as the lattice structures.

Short-ranged crystalline order at nearest-neighbor separations may thus be 
approached by these scattering techniques (Figure 4.1) through (4.30).

In fact, von Laue observed such diffraction patterns in 1914 by shining X-ray onto 
metal; the father-and-son Braggs then developed X-ray crystallography in 1915. Both 
works led to the Nobel Prizes in the respective years.

Recently, the advent of accurate X-ray scattering techniques has made it possible to 
measure the physical properties of dense plasmas for study in high-energy density phys-
ics (Glenzer & Redmer, 2009), and we shall revisit these subjects subsequently in Sec. 4.7.

4.6 � OBSERVATION OF LAUE PATTERNS IN COULOMB GLASSES
In conjunction with the aforementioned scattering experiments, we now turn to the 
observation of layered structures and Laue patterns in Coulomb glasses, created by 
the Monte Carlo (MC) simulations (Ogata & Ichimaru, 1989) of Sec. 2.4.1. In fact, solid-
ifications such as crystallization and/or glass transition are intriguing events in the 
thermal evolution of many-particle systems.

Later, in Sec. 5.2, we also investigate conditions that a one-component plasma 
(OCP) fluid crystallizes into a Coulomb solid through comparison of the free ener-
gies in the respective phases, as temperature is lowered below Γ > 180.

4.6.1 � MADELUNG ENERGY

When an OCP forms a crystalline lattice with a lattice constant b, the electrostatic 
energy per particle EM, called the Madelung energy, is expressed as
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where αM is called the Madelung constant. Table 4.1 lists the values of the energy con-
stant for various lattices (Foldy, 1978).

It has been assumed that an OCP in its ground state forms a body-centered-cubic 
(bcc) crystalline solid, a conclusion reached through comparison of the Madelung 
energies of the several cubic-lattices and other structures. Extensive MC simulations 
have been performed for OCP solids with cubic structures (Brush, Sahlin, & Teller, 
1966; Slattery, Doolen, & DeWitt, 1982), and the bcc lattice has been shown to have the 
lowest free energy at finite temperatures as well.

As we find in Table 4.1, however, the differences between the energy constants for 
those cubic lattices are so small that it would be inconceivable to assume a monocrys-
talline structure formed in a real solid.

In fact, if a rapid quench is applied to an OCP fluid from a temperature in excess 
of Γ = 180, the resultant state might possibly be a Coulomb glass, characterized by 
random polycrystalline structures with long-ranged bond-orientational order; such 
a conjecture stems from the fact that the differences in energies between various 
lattices are so minute. The particles may then be viewed as virtually locked around 
their positions in quasi-equilibria.

4.6.2 � LAYERED STRUCTURES AT VARIOUS QUENCHES

We thus follow the dynamic evolution of an OCP by MC simulations with 432 parti-
cles, starting with a fluid state at Γ = 160, leading to the formation of Coulomb glasses 
at different quenches: (A) an application of a sudden quench to Γ = 400 at c = 0; (B) an 
application of a gradual quench stepwise with ΔΓ = 10 from Γ = 160 at c = 0 to Γ = 400 at 
c = 23; (C) a sudden quench to Γ = 300 at c = 0 (Ogata & Ichimaru, 1989). Here, c denotes 
the sequential number of MC configurations measured in units of a million configu-
rations; the sequential number corresponds to an MC time via ωpt = 2.7 × 102c, with ωp 
referring to the plasma frequency (1.27).

To study the nature of interlayer correlations, we identify the particles in the three cen-
tral layers and project their positions normally onto a plane. In Figure 4.7 on the left, such 
projections are exhibited for the quenches (A)–(C), where open circles, closed circles, and 
crosses denote projections of the particles on upper, middle, and lower layer, respectively.

TABLE 4.1  Energy Constants for Various Lattices

Lattice αMa/b
Body-centered-cubic (bcc) −1.791 858 52
Face-centered-cubic (fcc) −1.791 747 23
Hexagonal-close-packed (hcp) −1.791 676 90
Simple cubic (sc) −1.760 118 90
Diamond (dmnd) −1.670 851 41
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For comparison, analogous projections are shown in Figure 4.7 on the right for the 
most closely packed layers in the face-centered-cubic (fcc), hexagonal-close-packed 
(hcp) and bcc crystals. We find here that the Coulomb glass with the quench (B) has 
developed an advanced state of polycrystalline nucleation predominantly with local 
fcc-hcp configurations over those with (A) and (C).

Intralayer correlations are investigated in terms of the bond-angle distributions 
P(θ) (Figure 4.8) and the two-dimensional radial distribution functions g(r) (Figure 4.9); 
these are joint probability densities of finding two particles at a separation r. We 
define “bonds” as those lines connecting two adjacent particles located within r < 2.5 
on a layer, “bond angle” as the angle between a pair of such bonds originating from 
a particle, and “coordination number” (CN) as the total number of bonds originating 
from a given particle.

In Figure 4.8, we plot the bond-angle distribution functions between intralayer 
particles in the quenched states (A)–(C) and compare them with analogous quantities 
for the fcc-hcp (i.e., hexagonal) and bcc lattices. In the state (B), P(θ) = 0 observed at θ ~ π/2 

FIGURE 4.7  Normal projections of most closely packed layers: Open circles, upper layer; closed 
circles, middle layer; crosses, lower layer (Ogata & Ichimaru, 1989).
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and 5π/6 implies an advanced degree of nucleation, while splitting of the peaks at  
θ ~ π/3 and 2π/3 indicates disordering effects on the local hexagonal configurations.

In Figure 4.9, we plot the two-dimensional radial distribution functions between 
intralayer particles and compare them with the peak positions for the fcc-hcp and bcc 
lattices. As seen in the figure, all the particles in the state (B) have CN = 6, implying little 
distortion in the local hexagonal configurations. In the states (A) and (C), however, dis-
tortion in the hexagonal configurations is substantial, since 89% and 90%, respectively, 
of the particles have CN = 6, while 5% and 8% have CN = 5, and 6% and 2% have CN = 7.

4.6.3 � LAUE PATTERNS FOR GLASSES

Finally, we investigate the combined effects between the intralayer and interlayer 
correlations by a scattering method of Sec. 4.5. We thus inject plane waves with wave 
vector k1 to the glasses (A)–(C) in the direction normal to the layered structures 

FIGURE 4.8  Bond-angle distribution functions between intralayer particles in the glasses 
(A)–(C). In the bottom of the figure, the solid lines indicate the bond angles for the fcc-hcp (hex-
agonal) lattices; the dashed lines, those for the bcc lattices (Ogata & Ichimaru, 1989).
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and measure the strength of scattered waves k2 in the directions specified by (χ, 
ϕ), where χ is the scattering angle between k1 and k2 and ϕ is the azimuthal angle 
around k1.

The cross-section (4.30) for coherent scattering is proportional to the static struc-
ture factor (4.31), where k = k2−k1. We assume that the incident wave numbers have a 
distribution proportional to exp[–(k1–k0)2/κ2] with k0 = 2π and κ = 0.24. The scattering 
experiment is thus capable of detecting the coherence in the phases 4πsin(χ/2)k·rj/k 
over those particles rj contained in a slab of width 4.2/sin(χ/2) in the direction of k.

Figure 4.10 displays the Laue patterns obtained for the glass states (A)–(C), and 
compares them with those of the fcc, hcp, and bcc lattices. We observe the existence of 
local hexagonal order in (B) and to a lesser extent in (A); a slight involvement of local 
bcc configurations is likewise detected for all the cases of (A)–(C).

In light of the analyses described above, we may conjecture the following stages of 
evolution for the glass transitions in dense plasmas: In a super-cooled OCP without 

FIGURE 4.9  Two-dimensional radial distribution functions between intralayer particles in 
the glasses (A)–(C). The bottom of the figure shows the peak positions for the fcc-hcp (solid 
lines) and bcc (dashed lines) lattices (Ogata & Ichimaru, 1989).
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an external field, layered structures (i.e., a one-dimensional order) develop first in an 
arbitrary direction. Intralayer (i.e., two-dimensional) ordering then follows, which 
would favor formation of fcc-hcp (i.e., hexagonal) local clusters.

Since the bcc lattice has a Madelung energy slightly lower than the fcc or hcp lat-
tice in Coulombic systems (Table 4.1), a possibility of nucleation remains for bcc clus-
ters. Hence, the resultant state may have a complex polycrystalline structure.

Later, in Sec. 10.3, we shall consider first-principles calculations of shear moduli for 
Monte-Carlo-simulated Coulomb solids, with the inclusion of the Coulomb glasses, 
and apply the results for improved analyses of the non-radial oscillations in neutron 
stars.

FIGURE 4.10  Laue patterns for the glasses (A)–(C) and for the fcc, hcp, and bcc lattices of 432 
particles. The polar coordinates consist of 0 ≤ (π–χ)/2 ≤ 0.45π and 0 ≤ ϕ≤ 2π; the origin corre-
sponds to χ = π. Here, χ is the scattering angle between incident and scattered waves; ϕ is the 
azimuthal angle around the incident wave (Ogata & Ichimaru, 1989).
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4.7 � X-RAY THOMSON SCATTERING AND TIME-
RESOLVED XANES DIAGNOSTIC WITH 
HIGH ENERGY DENSITY PLASMAS

Accurate measurements of the states of plasmas, including temperature, density, and 
ionization in dense matter, are essential in high-energy density physics (Glenzer & 
Redmer, 2009).

In Sec. 3.6, we remarked on the X-ray Thomson scattering measurements in the 
collective regime carried out in a beryllium target with solid density that was heated 
isochorically with a broadband X-ray source into a state of dense plasma with weakly 
degenerate electrons; the characteristic peak associated with the collective plasma 
oscillation was thereby observed. The spectrally resolving X-ray scattering technique 
has also been applied in a number of laboratories to study the properties of such 
dense plasmas (Sawada et al., 2007; Ravasio et al., 2007).

Solid-to-plasma transition dynamics have been approached with the aid of a 
recently advanced diagnostic technique such as time-resolved X-ray near edge spec-
troscopy (XANES) (Dorchies & Recoules, 2016). Electronic and structural proper-
ties with three different (simple, transition, and noble) types of metals have been 
investigated through absorption spectroscopy experiments with the aid of ultrafast 
X-ray free electron lasers (Dorchies et al., 2008; Cho et al., 2011; Katayama et al., 2013; 
Gaudin et al., 2014).
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5
THERMODYNAMICS OF 

CLASSICAL OCP AND 
QUANTUM ELECTRON LIQUIDS
The microscopic descriptions of the plasma in terms of the correlation functions 
and the structure factors are connected directly to the thermodynamics that specifies 
the macroscopic states and/or the phases of the system. Associated with these is the 
emergence of features such as insulator-to-metal transition, order–disorder transition, 
para- to ferromagnetic transition, and chemical separation. To lay foundations for 
such phase analyses, we now study the thermodynamic functions for the classical 
one-component plasma (OCP) as well as for the quantum liquids of electrons.

5.1 � RADIAL DISTRIBUTION FUNCTIONS 
AND CORRELATION ENERGIES

The radial distribution function g(r) is a joint probability density of finding two par-
ticles at a separation r. As was described in Sec. 2.1.2, it is related directly to the static 
structure factor S(k) in (2.8) as
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Figure 5.1 exhibits g(r) evaluated for Г  > 1 with the aid of the Monte Carlo (MC) simu-
lation methods explained in Sec. 2.4.1 (Iyetomi, Ogata, & Ichimaru 1992). Analytically, 
one can also evaluate the radial distribution functions through the solution to a set of 
integral equations. Figure 5.1 shows the results of such an integral-equation scheme, 

Statistical Physics of Dense Plasmas Thermodynamics of Classical OCP and Quantum 
Electron Liquids
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called the improved hypernetted-chain (e.g., Ichimaru, Iyetomi, & Tanaka, 1987) cal-
culations; agreements appear excellent.

The correlation energy Uint per unit volume can then be calculated, once either S(k) 
or g(r) is known, through formulae,
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Thermodynamics of the plasma may be approached through evaluation of such 
quantities.

5.1.1 � CORRELATION ENERGY IN THE RPA

Substituting the random-phase approximation (RPA) structure factor (3.20b) in (5.2), 
we obtain the RPA expression for the normalized correlation energy, uex ≡ Uint/nkBT, 
as

	 uex
DH = - 3

2
3 2G / . 	  (5.3)

FIGURE 5.1  Radial distribution functions of OCP fluids obtained by MC methods with 
N = 1024 at various values of Г. The number of the MC configurations generated for each run 
was 7 × 106; g(r) was calculated with 200 bins in the range 0 ≤ r ≤ L/2, a half of the cubic MC 
cell with size L = 16.2a. The solid curves represent the results calculated with the improved 
hypernetted-chain scheme (Iyetomi, Ogata, & Ichimaru, 1992).
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This is the RPA correlation energy, called the Debye–Hückel contribution.

5.1.2 � MULTI-PARTICLE CORRELATION

The RPA correlation energy (5.3) takes account of binary correlation to the lowest 
order in Г and thus is applicable to OCP only for Г << 1. The expression for the cor-
relation energy next order in the Г expansion has also been determined precisely as
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with γ = 0.57721… denoting Euler’s constant.
Correlation energies beyond RPA require accurate assessment of the triple- and 

higher-order correlations. These have been approached through various theoretical 
methods, including the giant cluster-expansion calculation (Abe, 1959), expansion 
in Г of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy (O’Neil & 
Rostoker, 1963), multi-particle correlation in the convolution approximation (Totsuji 
and Ichimaru, 1973), and the improved hypernetted-chain integral-equation scheme 
based on the density-functional formulation of multi-particle correlations (Ichimaru, 
Iyetomi, & Tanaka, 1987; Ogata & Ichimaru, 1987; Iyetomi, Ogata, & Ichimaru, 1992).

5.2 � OCP THERMODYNAMIC FUNCTIONS
Earlier, in Sec. 2.2.2, we introduced thermodynamic functions for the study of phase 
transitions and related phenomena in plasmas.

The correlation energies in large Г regime (Slattery, Doolen, & DeWitt, 1982; Ogata 
& Ichimaru, 1987) may be evaluated by the use of Monte Carlo radial distribution 
functions, such as those in Figure 5.1, to yield:

	 uex
OCP = - + + - < <-0 898004 0 96786 0 220703 0 86097 1 181 4 1 4. . . . (/ /G G G G 00). 	  (5.5)

In the intermediate-coupling regime, 0.1 ≤  Г  < 1, the excess internal energy has been 
calculated (Slattery, Doolen, & DeWitt, 1980) through the solution to the hypernetted-
chain (e.g., Ichimartu, Iyetomi, & Tanaka, 1987) scheme.

With the aid of these calculations, one finds a formula connecting (5.4) and (5.5) as 
(Ichimaru, 2004b)
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This formula is applicable for a classical OCP fluid in the range Г < 180 with the accu-
racy better than 0.1%.
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5.2.1 � OCP FREE ENERGY

The free energy per particle, f(Г), in units of the thermal energy is then given as a sum 
of the ideal-gas and excess contributions (Ichimaru, 2004b):
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representing the ratio between the thermal de Broglie wavelength and the ion-sphere 
radius. In (5.7), the excess free energy, fex(Г), is calculated through the coupling-con-
stant integration (2.30) of (5.6) as

	
fex
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In (2.30), Uint(η) refers to the correlation energy (5.6) evaluated in a system where the 
strength of Coulomb coupling Г is replaced by ηГ.

5.2.2 � OCP PRESSURE

The excess pressure Pex may be evaluated by differentiation of Fex with respect to vol-
ume V at a constant temperature, that is,
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5.2.3 � SOLID FREE ENERGY

The thermodynamic functions for classical OCP solids have been investigated 
through the MC simulations coupled with analytic study of the anharmonic effects 
in the lattice vibrations (Dubin, 1990). The normalized correlation energy for an OCP 
body-centered-cubic (bcc)-crystalline solid is thus given by

	 uex
OCP( ) . .

. . .
,G G

G G G
= - + + + + ´

0 895929 1 5
10 84 352 8 1 74 10

2

5

3 	  

where the first term on the right-hand side reflects the value of the Madelung energy 
for the bcc lattice (Foldy, 1978); it is the electrostatic energy per particle in an OCP that 
forms a crystalline lattice.
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The free energy f(Г) in the classical OCP solid can be evaluated by integrating the 
correlation energy with respect to the inverse temperature as (Dubin, 1990)
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under the assumption that the ground-state free energy f(∞) is given by the harmonic 
lattice value (Pollock & Hansen, 1973).

5.2.4 � WIGNER CRYSTALLIZATION

Comparing the free energies between the fluid and crystalline phases, we find that 
an OCP fluid may freeze (i.e., Wigner transition) into a bcc crystal at Г = 172 ~ 180. In 
light of a possible formation of Coulomb glasses, as considered in Sec. 4.6, however, 
how the actual transitions may take place in real plasmas remains a delicate issue.

5.3 � EQUATIONS OF STATE FOR QUANTUM ELECTRON LIQUIDS
Metallic hydrogen is a binary system of itinerant electrons and those protons in a 
fluid or in a solid state. In the jellium model of metals, we regard those itinerant 
electrons as a quantum electron liquid (Pines & Nozièrez, 1966). Basic parameters for 
such electron liquids at metallic densities have been defined in Sec. 1.2.

5.3.1 � IDEAL-GAS CONTRIBUTIONS

The Helmholtz free energy and the pressure are expressed as sums of the ideal-gas 
and exchange-correlation parts:

	 f f fG G, , .q q q( ) = ( ) + ( )0 xc 	 (5.12a)

	 p p pG G, , .q q q( ) = ( ) + ( )0 xc 	 (5.12b)

The Gibbs free energy is then given by

	 G F PV= + . 	 (5.12c)

The ideal-gas contribution to the free energy is expressed as a balance between those 
of the chemical potential, µ (Г,θ) (= Gibbs free energy per particle) and the pressure as

	 f p0 0 0( ) ( ) ( ).q m q q= - 	  (5.13)
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Through numerical investigation of the relevant Fermi integrals (cf. Appendix IV), 
we find that the chemical potential may be accurately fitted by the expression,
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Similarly, we obtain for the pressure,

	 p0

2

2 51
2

5
1 1 78600

1 0 71400 2 14768
( )

.
. .

..q
q

q + 2.32734q
q q

= + -
+ +

	  (5.15)

Both of the preceding expressions exactly satisfy the limiting conditions for the first 
two terms in the expansions for θ ≪ 1, i.e., µ0 = EF and p0 = (2/5)nEF, as well as for  
θ ≫ 1, i.e.,

	
m q
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0 3

2
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3k TB
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and p0 = nkBT.

5.3.2 � EXCHANGE–CORRELATION CONTRIBUTIONS

The exchange–correlation energies of electron liquids at finite temperatures  
θ = 0.1, 1.0, 5.0 were evaluated through a solution to a set of integral equations (Tanaka &  
Ichimaru, 1986). The results were then parameterized in analytic formulae as 
(Ichimaru, Iyetomi, & Tanaka, 1987; Ichimaru, 2004b)
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The term (5.17a) represents the Hartree–Fock contribution (Perrot & Dharma-
wardana, 1984).

The coupling-constant integration (2.30) is performed with (5.16) to yield
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A condition that 4e − d2 > 0 is satisfied for any θ. Values of the exchange and cor-
relation free energy in the ground state, given by (5.18), agree accurately with those 
obtained by Green’s function Monte Carlo simulations (Ceperley & Alder, 1980) at 
rs = 2, 5, 10, 20, 50, 100.

5.3.3 � ORIGIN OF COHESIVE FORCES

It is instructive to examine parameter dependence and sign of the elementary contri-
butions in the specific pressure (5.12b) in the limit of the quantum degeneracy, θ → 0. 
The ideal-gas contributions behave as

	 p n0
2 32 5 0→ >/ ~ ( )./θ 	  (5.19a)

The Hartree–Fock contribution to the pressure (5.10) stems from the evaluation (5.16) 
in which only the term (5.17a) is retained, and it takes on the value,

	 p r e nsxc
HF → − <0 083 02 1 3. / ~ ( )./θ 	  (5.19b)

The Coulomb pressure, which represents the large-rs contributions in (5.10), likewise 
behaves as

	 p r e nsxc
Coul → − <0 158 02 1 3. / ~ ( )./θ 	  (5.19c)
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Note, both the exchange and Coulomb terms, (5.19b) and (5.19c), are negative and pro-
portional to the strength of Coulomb coupling represented by e2.

We specifically emphasize the significance of these observations in elucidating the 
origin of cohesive forces in the ferromagnetic and freezing transitions.

5.4 � FREEZING AND FERROMAGNETIC 
TRANSITIONS IN ELECTRON LIQUID

Thus far, we have considered itinerant electrons forming an electron liquid and pro-
tons in a fluid or solid state. Metallic hydrogen, which we consider subsequently, is a 
binary system of those electrons and protons.

The electron liquid is a quantum OCP of electrons immersed in a uniform com-
pensating background of positive charges. Electrons are fermions, with spin 1/2, 
obeying the Fermi statistics. Wave functions of two identical fermions with parallel 
spins are antisymmetric, that is to say, they change their signs when the positions of 
the two fermions are interchanged. The values of wave functions vanish when two 
identical fermions occupy the same position; interpreted physically, identical fermi-
ons with parallel spins repel each other.

This observation then accounts for the origin of the spin-discriminating (repul-
sive) exchange forces between such identical fermions. These exchange forces and the 
ordinary Coulomb forces, both repulsive, are effective between protons as well as 
between electrons.

These repulsive forces induce the so-called “exchange” and “Coulomb” holes in 
the two-particle distribution functions for electrons (e.g., Ichimaru, 1982). The interac-
tion between electrons and such “holes,” which is attractive, then produces negative 
contributions to the free energy and the pressure, as (5.19b) and (5.19c) exemplify. 
These negative free energies stimulate spin ordering in a ferromagnetic transition 
and crystalline ordering in a freezing transition.

It has thus been expected that an electron liquid may undergo a magnetic transi-
tion, from a spin-non-aligned, paramagnetic phase to a spin-aligned, ferromagnetic 
phase (Ceperley & Alder, 1980; Ichimaru, 1997, 2000; Ortiz, Harris, & Ballone, 1999) 
near the conditions for Wigner crystallization, a phase transition of dilute electrons 
into a crystalline state at low temperatures (Wigner, 1935, 1938). A magnetic transi-
tion takes place basically through competition between the spin-dependent exchange 
processes, which favor a ferromagnetic state, and the kinetic energies, which favor a 
paramagnetic state.

Analogous situations may exist in the case of a freezing transition, where the repul-
sive Coulomb forces favor an inhomogeneous distribution such as one in a Wigner 
crystal, while the kinetic processes favor a uniform distribution characteristic of a 
fluid state.
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6
PHASE DIAGRAMS 

OF HYDROGEN
Hydrogen, which we know as a light gaseous substance at ambient temperature and 
pressure, may exhibit extraordinary features pertinent to the strongly correlated 
plasmas when it is compressed to densities comparable to or greater than those of 
ordinary solids. Basically, hydrogen matter is a statistical ensemble consisting of 
electrons and protons. The protons, with the smallest atomic number (unity) among 
various chemical elements and thus with de Broglie wavelengths longer than those of 
other nuclear species, tend to interfere more conspicuously with each other quantum 
mechanically under such condensed circumstances.

Dense hydrogen under ultrahigh pressures as found in stellar and planetary interi-
ors may be expected to undergo transformation between phases such as metallization, 
crystallization, and magnetization. All of these phase transitions are not only of great 
interest in the condensed-matter physics, but, since hydrogen is the most abundant 
chemical element in the Universe, their nature crucially affects fundamental issues 
in astrophysics, such as the generation of energy and magnetism in the interiors of 
stars and planets as well as energy transport to stellar and planetary surfaces. Thus, 
the physics of hydrogen constitutes a vital element in the formation, structure, and 
evolution of these astronomical objects.

6.1  STATES OF HYDROGEN
A hydrogen atom is a bound state between an electron and a proton. The orbital 
radius of a bound electron in the ground state is the Bohr radius, given by

	 a
me

B = =�2

2 0 529177. Å. 	 (6.1a)
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Phase Diagrams of Hydrogen

The binding energy of a hydrogen atom in the ground state constitutes a unit of 
energy called the Rydberg and takes on the value,

	
me4

22
13 6057 1

�
= º. .eV Ry 	 (6.1b)

These provide typical scales of length and energy in the atomic physics of hydrogen.

6.1.1  MOLECULAR HYDROGEN

A hydrogen molecule is a bound state between two hydrogen atoms; in the ground 
state, the average interproton spacing is 0.742 Å (≈ 1.4 aB).

The dissociation energy and the ionization potential of a hydrogen molecule are 
4.474 eV (≈0.33 Ry) and 15.43 eV (≈1.13 Ry), respectively. The dissociation energy of a 
molecular ion, H2

+, is 2.467 eV (≈0.18 Ry).

6.1.2  PRESSURE IONIZATION

If the number density n of protons is high so that the Wigner–Seitz radius (1.6) is less 
than the Bohr radius, i.e., a < aB (corresponding to n > 1.6 × 1024 cm−3), wave functions 
of orbital electrons in neighboring hydrogen atoms or molecules significantly overlap 
each other, and so they make conduction electrons; such a process is called pressure 
ionization.

In terms of the Fermi energy EF and the Fermi wave number kF,
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of the electrons with number density ne, the Fermi pressure is calculated as
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implying a pressure in a multi-megabar range for the pressure ionization.
In 1935, E. Wigner and H. B. Huntington were the first to predict the possibility of 

such a metallic modification of hydrogen at an extreme pressure. They did so through 
calculations of the energy of a body-centered lattice of hydrogen as a function of the 
lattice constant and by comparison of the result with the energy of the molecular 
form (Wigner & Huntington, 1935).

Hydrogen is thus expected to undergo a first-order, metal–insulator (MI) transi-
tion at an ultrahigh density or in a pressure range of megabars (Ceperley & Alder, 
1987; Kitamura & Ichimaru, 1998; McMahon et al., 2012). We shall revisit these sub-
jects in subsequent sections.
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6.1.3  LABORATORY REALIZATION OF METALLIC HYDROGEN

Ultrahigh-pressure metal physics experiments have been undertaken for laboratory 
realization of such metallic hydrogen and for the elucidation of the equations of state 
and the transport properties of dense hydrogen.

The experimental approaches include diamond-anvil-cell compression (e.g., Mao &  
Hemley, 1989, 1994) and shock compression (e.g., Dick & Kerley, 1980; Mitchell & 
Nellis, 1981; Fortov, 1995). Metallization of molecular hydrogen, though elusive in 
the diamond-anvil-cell experiments (Ruoff & Vanderbough, 1990; Mao, Hemley, & 
Hanfland, 1991; Hemley et al., 1996), was successfully demonstrated in experiments 
using compression through shock wave reverberation between electrically insulat-
ing sapphire (Al2O3) anvils (Weir, Mitchell, & Nellis, 1996; Da Silva et al., 1997), as we 
shall recapitulate in Sec. 7.2.

6.1.4  METALLIC HYDROGEN IN ASTROPHYSICAL OBJECTS

The giant planets such as Jupiter are thought to consist mostly of metallic hydrogen 
(Stevenson, 1982; Van Horn, 1991). The first-order MI transitions predict a discontinu-
ous distribution and resistivity near the surface of Jupiter, implying a large enough 
magnetic Reynolds number to sustain the prominent magnetic activities (e.g., Kennel 
& Coroniti, 1977; Stevenson, 1982).

The release of latent heat associated with metal-to-insulator transitions through 
cooling may possibly account for a considerable fraction of its excess infrared lumi-
nosity (Aumann, Gillespie, & Low, 1969; Hubbard, 1980), as we shall revisit in Chap. 7.

Ferromagnetic and freezing transitions in the liquid-metallic hydrogen (Ichimaru, 
2001) are important issues, not only in condensed-matter physics but in conjunc-
tion with the conspicuous magnetic phenomena in astrophysics, such as those asso-
ciated with the origin of intense magnetization found in the degenerate stars (e.g., 
Chanmugam, 1992). Liquid-metallic hydrogen relevant to the ferromagnetic transi-
tions may, for example, be expected in an outer layer of a hydrogen-rich white dwarf; 
we shall explore these in Chap. 8.

6.1.5  NUCLEAR REACTIONS

The rates of a nuclear process such as thermonuclear and pycnonuclear reactions are 
influenced significantly by the state or the phase that a dense matter may assume (e.g., 
Ichimaru, 1993). A huge enhancement of the reaction rates arising from internuclear 
Coulomb correlation in dense matter, albeit ineffective for the solar nuclear reactions 
or for the ICF experiments, provides a physical mechanism vital to supernovae.

Experimental and theoretical progress in ultrahigh-pressure metal physics may 
make a “supernova on the Earth” scheme utilizing enhanced pycnonuclear reactions 
in ultradense metallic hydrogen an attractive and possibly even realizable prospect 
for fusion studies; we shall take up on this subject in Chap. 9.
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6.2  EQUATIONS OF STATE FOR HYDROGEN
Metallic fluid hydrogen consists of itinerant electrons (fermions with spin-½) and itin-
erant protons (classical, or fermions with spin-½) with strong electron-ion (e-i) cou-
pling. Metallic solid hydrogen consists of itinerant electrons (fermions with spin-½) 
and a bcc array of protons (classical) with harmonic and anharmonic lattice vibra-
tions with strong e-i coupling (e.g., Kitamura & Ichimaru, 1998; Ichimaru, 2004b).

Equations of state for those metallic fluid and solid hydrogen may be constituted 
through combinations of those presented in the previous chapter.

6.2.1  MOLECULAR FLUIDS

Among the potential functions describing the intermolecular forces, the Lennard-
Jones potentials have been thought to be most desirable in light of accuracy, general-
ity, and analyticity (e.g., Ceperley & Kalos, 1979).

For the intermolecular potentials between hydrogen molecules, we may use a 
Lennard-Jones potential,
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A statistical system interacting with a Lennard-Jones potential is represented by the 
three dimensionless parameters:
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with mp and nm denoting the mass of a proton and the number density of the mol-
ecules. These parameters characterize the density, temperature, and quantum-
mechanical effects, respectively.

The specific Helmholtz free energy (per molecule in units of kBT) of a molecular 
H2 fluid is expressed as

	 f f f f f f
E
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The terms on the right-hand side consist of an ideal Bose gas, short-range repulsive 
interaction between molecular cores, attractive (dipolar) van der Waals forces, molec-
ular rotation (roton), intramolecular vibration (vibron), and the ground-state energy 
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of a H2 molecule (EH2) (Hansen & Verlet, 1969; Hansen, 1970; Hansen & McDonald, 
1986; Kitamura & Ichimaru, 1998).

The analytic formula for fm
id, applicable at any temperature and density, is 

expressed as
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In this expression,
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is the free energy of a classical Boltzmann gas and
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is the corresponding expression for a degenerate Bose gas. The transition tempera-
ture between these two evaluations is expressed as
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where J n n n( ) ( ) × ( )= G z , with G n( ) and z n( ) representing the gamma function and 
the zeta function (cf. Appendix IV).

6.2.2  MOLECULAR SOLIDS

The Helmholtz free energy of H2 solid with the Lennard-Jones intermolecular poten-
tial is expressed as

	 f f f f f
E
k TB

mol-sol coh ph rot vib
H= + + + + 2 .	 (6.9)

Equations of state in the molecular-solid insulator phase of hydrogen consist of cohe-
sive energy with a hexagonal-close-packed (hcp) structure (e.g., Ashcroft & Mermin, 
1976),
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lattice vibration (phonon), roton, vibron, and the ground-state energy of a H2 mol-
ecule EH2( ) (Hirschfelder, Curtis, & Bird, 1954; Kitamura & Ichimaru, 1998).

In addition, we take into account contributions of atomic hydrogen to the equa-
tions of state, which include the repulsive hard sphere, the attractive van der Waals, 
and the ground-state energy (EH) of H atoms (Dargarno, 1967; Victor & Dargarno, 
1970; Kitamura & Ichimaru, 1998).

6.3  PHASES OF HYDROGEN MATTER
The phase diagrams for the MI transitions in hydrogen matter may be determined 
through the explicit formulation of the equations of state in the metallic (solid, para-
magnetic fluid, ferromagnetic fluid) phases as well as in the insulator (molecular solid, 
molecular fluid, atomic and molecular fluid) phases, as listed in the previous section. 
Thus, we consider a matter consisting of atomic, molecular, and ionized hydrogen, 
which may be characterized by the temperature T, the total number density of pro-
tons np, the degree of ionization Z , and the degree of dissociation αd. The number 
densities of ions, plasma electrons, neutral atoms, and molecules are then given by

	 n Z n n np e= =, ,	

	 n Z n n Z na d p m d p= -( ) = -( ) -( )a a1 1 1 2, / .	

6.3.1  EQUATIONS OF STATE FOR THE FLUID PHASE

For a fluid phase, the total Helmholtz free energy, Ftot, may thus be expressed as 
a sum of molecular (6.11a), atomic (6.11b), metallic (6.11c), and intermolecular (6.11d) 
contributions in the following (Kitamura & Ichimaru, 1998):
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In this formulation, interaction between plasmas and neutral particles is taken into 
account through excluded-volume effects and changes in the levels of bound elec-
trons: In the former effects, specific volume for the plasma particles (i.e., ions and 
electrons) is effectively reduced by the presence of neutral atoms and molecules, so 
that the term (6.11c) contains a normalized density, r r hm m= -/( )1 , where h is the 
packing fraction:

	 h p= +( )
6

3 3n d n dm m a a 	 (6.12)

with da and dm denoting the effective hard-sphere diameters of a hydrogen atom and 
molecule (Lebowitz & Rowlinson, 1964). Thus, the presence of neutral atoms has been 
effectively taken into account in (6.11d).

6.3.2  SHORT-RANGE SCREENING BY ELECTRONS

When metal and insulator phases coexist, the energy level of an electron bound in a 
molecule or in an atom in a dense plasma may be lowered, or may even disappear, 
owing to the screening action of plasma electrons (e.g., Ichimaru, 2004b). The extent 
to which such a modification may take place depends on the ratio between the Bohr 
radius and the short-range screening distance Ds of the plasma defined in terms of 
the dielectric response function Ɛe(k, 0) of the electrons as
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Thus, the ground-state energy of a hydrogen atom in a plasma may be expressed as

	 E f a Ds B sH eV( ) . / ,= - ( )13 6 	

where

	 f x x x x xs( ) . . . . .= - + - +1 1 9585 1 2172 0 24900 0 0129732 3 4 	 (6.14)

This screening function has been obtained through the numerical solution to a 
Schrödinger equation for an electron in a Yukawa potential, −(e2/r) exp (−r/Ds). As x 
increases from zero, the value of fs(x) decreases from fs(0) = 1, meaning that an atomic or 
a molecular level is lowered; fs(x) vanishes at x = 1.17, where a bound state disappears.

Of significance in these connections is the essential difference between the two 
screening lengths defined by (6.13) and by the thermodynamics,
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with µ denoting the chemical potential of the screening electrons; the usual Debye–
Hückel screening distance, lD  in (1.14), is a version of this DL.

Since DL
2 has been defined in terms of the isothermal compressibility of the elec-

trons, the latter quantity may take on a negative value at low densities (i.e., in the 
strong Coulomb coupling), when DL would become an ill-defined quantity.

On the other hand, Ds in (6.13) remains a well-defined quantity, since one generally 
proves

	 1 0 1ee k( , ) < 	 (6.16)

from the causality requirement with a density–density response function (e.g., 
Ichimaru, 1982). Since Ds characterizes the short-range behavior of the screened 
Coulomb forces, it plays an essential part in calculating the rate of nuclear reactions 
in dense plasmas, as we shall recapitulate in Chap. 9.

A ground-state energy, EH2, of a hydrogen molecule in plasma may likewise be 
calculated as

	 E f a Ds B sH2 2 13 6 4 747(eV) . / . .= - ´ ( ) - 	

The last numeral, 4.747, represents the dissociation energy in units of eV. We remark 
that this number does not contain the contribution of zero-point energies of the 
vibrons; the latter has been taken into account already in the term (6.11a).

6.4  COEXISTENCE CURVES AND THERMODYNAMICS
When the values of the mass density ρm and the temperature T are given, the chemi-
cal equilibrium of the system may be determined through the condition that the total 
free energy, (6.11a–d), be minimized with respect to Z  and ad . With the state of the 
matter so determined, we may calculate the values of the thermodynamic quantities 
in a standard way:
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	 entropy: S
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	 (6.17b)

and so on (e.g., Landau & Lifshitz, 1969).
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6.4.1  PHASE DIAGRAM AND COEXISTENCE CURVES

The phase diagram of hydrogen obtained through considerations of the equations of 
state for those various states is shown in Figure 6.1. The dotted curves are isobars at 
the designated pressure values. Z  denotes the degree of ionization; ad , the degree 
of atomic dissociation. CMI and CGL are the critical points associated with metal– 
insulator and gas–liquid transitions; TGLS, the gas–liquid–solid triple point; Tspf, the 
triple point for the solid–paramagnetic–ferromagnetic phases; Cmag, the critical point 
for the ferromagnetic transitions. (Kitamura & Ichimaru, 1998)

Coexistence curves between the MI transitions are derived from the general condi-
tions for the phase equilibrium (e.g., Landau & Lifshitz, 1969), that is,

	 P T P TM I( , ) ( , ),r r= 	 (6.18a)

	 G T G TM I( , ) ( , ).r r= 	 (6.18b)

The mass densities, ρM and ρI, are those of metallic and insulating hydrogen along 
the coexistence curves. The coexistence curves for the MI transitions in hydrogen 

FIGURE 6.1  Phase diagram of hydrogen: The dotted curves are isobars at the designated 
pressure values. Z  denotes the degree of ionization; ad , the degree of atomic dissociation. 
CMI and CGL are the critical points associated with metal–insulator and gas–liquid transi-
tions; TGLS, the gas–liquid–solid triple point; Tspf, the triple point for the solid–paramagnetic– 
ferromagnetic phases; Cmsg, the critical point for the ferromagnetic transitions. See the text for 
designations of examples cited for hydrogen matter in terrestrial laboratory and astrophysi-
cal settings (Kitamura & Ichimaru, 1998).
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so obtained are also shown in Figure 6.1. Here, we clearly observe the first-order MI 
transitions exhibited in a high-density regime of hydrogen.

The diagrams have been constructed through explicit calculations of the equations 
of state for the metallic (solid, paramagnetic fluid, ferromagnetic fluid, partially ion-
ized atomic and molecular fluid) phases as well as in the insulator (molecular solid, 
molecular fluid, atomic and molecular fluid) phases.

In Figure 6.1, we also exhibit approximate parameter domains for the hydrogen 
matter appropriate to the solar interior, the Jovian interior, inertial-confinement 
fusion (ICF) researches, ultrahigh-pressure metal experiments (shock or diamond-
anvil-cell compression), proton-deuteron (p-d) fusion in ultradense metallic hydro-
gen, and hydrogen at standard (STD) conditions. (The “rock” shown here for the core 
of Jupiter is not of hydrogen, as explained in Figure 1.1.)

6.4.2  THERMODYNAMICS ACROSS THE MI TRANSITIONS

Table 6.1 lists the thermodynamic characteristics of the MI transitions as functions of 
the pressure, down to the critical point CMI, where log P (bar) = 3.477; log T (K) = 4.320; 

log / .rm g cm3 2 721( ) = -  (Kitamura & Ichimaru, 1998). We find that the increment of 
the specific entropy, s ≡ S/VnkB, between metal and insulator phases, ∆sMI (≡ sM − sI) > 0;  
hence, the insulator-to-metal transition is an endothermic process.

Summarizing the theoretical predictions in Figure 6.1 and Table 6.1 for the MI 
transitions, we note: In the coexistence conditions between the metal and insula-
tor phases, all the thermodynamic quantities except for the pressure, the tempera-
ture, and the chemical potential are discontinuous. The density, the entropy, and the 
enthalpy are greater in the metallic phase than in the insulator phase. These discon-
tinuities vanish at the critical point CMI, where log P (bar) = 3.477; log T (K) = 4.320; 

log / .rm g cm3 2 721( ) = - .

6.5  METAL–INSULATOR TRANSITIONS
The MI transitions in dense hydrogen have attracted the interest of many investiga-
tors since the pioneering work of Wigner and Huntington (1935).

Friedel and Ashcroft (1977) carried out approximate electron band calculations 
that predicted a band crossing at rm = 0 82 3. /g cm . Analogous calculations were per-
formed by Chacham and Louie (1991) for the band gap of solid molecular hydrogen in 
the hcp structure, which predicted that the orientationally ordered phase undergoes 
metallization due to an indirect band overlap at rm = 0 8 3. /g cm  and an orientation-
ally disordered phase at rm = 1 06 3. /g cm .

In conjunction with shock-compressed states determined by the Hugoniot rela-
tions, Ross, Ree, & Young (1983) and Holmes, Ree, & Young. (1995) obtained so-called 
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shock equations of state with the aid of adopted model potentials and predicted a 
transition to a bcc metal above 5 Mbar.

Equations of state in dense hydrogen were investigated with model intermolecu-
lar potentials to predict the conditions for pressure ionization (Brovman, Kagan, & 
Kholas, 1972; Ebeling et al., 1991; Saumon, Chabrier, & Van Horn, 1995).

Quantum Monte Carlo simulations were performed for MI transitions in the 
ground state (Ceperley & Alder, 1987) as well as at elevated temperatures (Magro 
et al., 1996).

Recent progress in the computer simulation studies on the properties of hydro-
gen and helium under extreme conditions has been extensively reviewed (McMahon 
et al., 2012).

An insulator-to-metal transition (i.e., metallization) proceeds in the direction of 
decreasing the chemical potential, accompanied by an increase of the temperature 

TABLE 6.1  �Thermodynamic Quantities for Dense Hydrogen along the Metal–
Insulator Coexistence Curves as Functions of Pressure.

log (bar)P log (K)T log (g / cm )3rrI log (g / cm )3rrM sI sM DDsMI

6.385 1.000 −0.0738    0.0284   1.48E−7   5.04E−3 5.04E−3
6.385 1.301 −0.0738    0.0284   1.20E−6   1.02E−2 1.02E−2
6.385 1.699 −0.0738    0.0284   1.90E−5   2.81E−2 2.81E−2
6.385 2.000 −0.0740    0.0283   2.49E−3   7.35E−2 7.10E−2
6.384 2.267 −0.0745    0.0281   0.130   0.200 7.00E−2
6.384 2.267 −0.0745    0.0264   0.130   3.510 3.380
6.368 2.477 −0.0857    0.0216   0.832   2.298 1.466
6.347 2.699 −0.0973    0.0136   0.938   2.769 1.831
6.286 3.000 −0.131 −0.0108   1.564   3.938 2.374
6.215 3.176 −0.169 −0.0394   2.271   4.823 2.552
6.140 3.301 −0.209 −0.0698   3.022   5.563 2.541
6.000 3.473 −0.288 −0.128   4.399   6.657 2.258
5.981 3.493 −0.299 −0.136   4.585   6.797 2.212
5.981 3.493 −0.327 −0.136   5.487   6.797 1.310
5.924 3.602 −0.356 −0.168   6.086   7.453 1.367
5.852 3.699 −0.401 −0.207   6.781   8.060 1.279
5.719 3.845 −0.491 −0.288   7.967   9.022 1.055
5.541 4.000 −0.624 −0.418   9.254 10.146 0.892
5.000 4.234 −1.087 −0.884 11.516 12.715 1.199
4.754 4.301 −1.357 −1.079 12.397 13.656 1.259
4.531 4.365 −1.648 −1.500 13.283 15.897 2.614
4.126 4.352 −2.061 −2.221 14.135 18.763 4.628
4.000 4.342 −2.186 −2.337 14.365 19.112 4.747
3.754 4.327 −2.433 −2.526 14.904 19.602 4.698
3.477 4.320 −2.721 −2.721 20.385 20.385 0.000

Note:	 “Ex” Means “10X”
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and/or decrease of the pressure. It is thus an endothermic process, analogous to our 
familiar vaporization and melting transitions, as remarked earlier.

When a change of states takes place, the enthalpy W of the system varies from the 
initial to the final by an amount,

	 DW VdP TdS= +ò òinitial

final

initial

final

.	 (6.19)

The first term on the right-hand side describes a hydro-mechanical compression; the 
second term, a thermal process that involves the release of a latent heat.

Looking from somewhat different directions, we note: When hydrogen in an insu-
lator phase is compressed to a state of high density such that average inter-particle 
spacing between protons becomes comparable to or less than the orbital radii of the 
bound electrons, which are on the order of the Bohr radius, electrons begin to assume 
itinerant states due to overlapping of wave functions between adjacent electrons. It is 
a pressure ionization, mentioned earlier, which takes place instantaneously as in an 
electric breakdown.

Another class of metallization may take place when the temperature is raised 
above the atomic or molecular binding energies of the electron. It is thermal ioniza-
tion, whose degree of ionization changes continuously as the temperature varies.
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7
TRANSPORT PROCESSES

A dense plasma material may be modeled as a two-component plasma (TCP) 
constituted by electrons and ions. In the TCP, attractive interaction between 
electrons and ions, an essential ingredient for the formation of atoms, brings about 
novel features in that the strong correlations between electrons and ions are taken 
into account on an equal footing with the atomic and molecular processes in such 
a condensed environment. These dense-plasma effects may also influence the 
atomic levels themselves. The strong electron-ion (e-i) coupling thus opens up new 
dimensions in condensed plasma physics, whereby interplay with the atomic and 
molecular physics plays a central part. We may recall these features observed already 
in the metal–insulator (MI) transitions.

In this chapter, we first consider the electric and thermal resistivity in such dense 
plasmas. The results are then applied to the explanation of an ultrahigh-pressure metal 
physics experiment as well as to the elucidation of Jovian excess infrared luminosity.

7.1 � ELECTRIC AND THERMAL RESISTIVITY
Electric and thermal resistivity arises as a consequence of scattering between elec-
trons and ions in plasmas. A proper treatment of such e-i interactions is quite essen-
tial, as the resistivity would diverge in a classical treatment of scattering at short 
distances.

Hubbard and Lampe (1969) investigated thermal conduction by electrons in dense 
stellar matter through a Chapman–Enskog solution to the quantum-mechanical 
transport equation in weak Coulomb coupling. On the basis of a quantum-mechani-
cal theory for the current–current correlation functions, Boercker, Rogers, and DeWitt 
(1982) obtained an expression for electric resistivity, where electrons were treated 
semi-classically in their numerical calculations.

In an earlier investigation, Tanaka, Yan, and Ichimaru (1990) calculated the resis-
tivity of dense hydrogen plasmas through solutions to quantum-statistical transport 
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Transport Processes

equations for the electrons (e.g., Ichimaru, 2004a,b). It was shown in particular that 
quantum diffraction of electrons in the vicinity of ions, called incipient Rydberg state 
(IRS) effects, plays a major part in the Coulomb resistivity for dense plasmas close to 
the MI transitions treated in the preceding chapter.

In the treatment of the MI transitions, Kitamura and Ichimaru (1995) extended 
the results to the cases including high-Z TCP. They then performed additionally the 
partial-wave analyses in the ion-sphere model on the Z-dependent effects for the 
scattering cross-sections.

We may also note a related effect in the short-range screening by electrons, which 
lowers the energy level of an electron bound in a molecule or in an atom in dense 
plasmas. Such an effect may even act to eliminate the level, owing to the strong action 
of screening electrons, as we have seen in Sec. 6.3.2.

7.1.1 � PARAMETERIZED FORMULAE

We begin with the parameterized formulae of the resistivity in fully ionized plasmas 
with the ionic charge number Z, the number densities ni, and ne of the ions and the 
electrons. Electric and thermal resistivity, ρE and ρT, arising from e-i scattering are 
expressed as (Kitamura & Ichimaru, 1995)
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where CP and CP
( )0  are the specific heat (per electron) at constant pressure for the 

plasma and for the ideal-gas electrons, respectively. In dense plasmas, due to the 
presence of strongly coupled ions, the values of C CP P

( ) /0  can be significantly smaller 
than unity; this effect may thus act to enhance the thermal transport.

7.1.2 � GENERALIZED COULOMB LOGARITHMS

Formulae (7.1) and (7.2) define the generalized Coulomb logarithms, LE and LT. In the clas-
sical (θ ≫ 1) and weak-coupling (Γ ≪ 1) regime, both LE and LT approach the Debye–
Hückel limiting values,
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and γ = 0.57721… is Euler’s constant. This formula has been derived by Kivelson and 
DuBois (1964) with the aid of the quantum-mechanical Lenard–Balescu–Guernsey 
equation (e.g., Ichimaru, 2004a).

7.1.3 � SCREENED POTENTIALS

In the degenerate (θ ≪ 1) and strong-coupling (Г ≫ 1) regime, the inter-particle correla-
tions are described by the ion-sphere model of Sec. 1.3.3, in which one considers an ion 
surrounded by a uniform electronic charge sphere of the ion-sphere radius a, as depicted 
in Figure 1.5. In this model, the potential of scattering around an ion is expressed as
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where the position of the ion is set at the origin, r = 0.
The resistivity is proportional to the transport cross-section, Qm(kF), for the elec-

trons with wave number kF = (3π2ne)1/3 (e.g., Landau & Lifshitz, 1965). This quantity 
may be evaluated from the phase shifts, obtained through numerical solutions to the 
Schrödinger equation with the potential U(r).

The Born approximation is applicable for EF > Z2 Ry. In this regime, the values of 
Qm(kF) obtained through the phase shift analyses, in fact, show good agreement with 
the results in the Born approximation (Kitamura & Ichimaru, 1995), which can be 
expressed in a fitting formula,

	 Q k a r Z Zm F s
Born ( ) . exp( . )./ /= -1 14 1 472 2 8 3 1 3 	 (7.5)

This formula is applicable for Z ≤ 26.
On the basis of the results, (7.3) and (7.5), applicable to both ends of the limit, we 

may express the Coulomb logarithms as
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where αE = 1, αT = 75/13π2 = 0.5845…, and
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In these formulae, AE = 0.42, BE = 0.063, AT = 0.38, BT = 0.049, C = 6 × 10−4, D = 2, and 
K = 2.5, which have been determined through fit to computed results for hydrogen 
plasmas at 0.01 ≤ θ ≤ 10, 0.05 ≤ Γ ≤ 43.441, and xb ≤ 1.5 (Tanaka, Yan, & Ichimaru, 1990).

7.1.4 � THE IRS PARAMETER

Here and in (7.6),
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is a dimensionless IRS parameter, proportional linearly to e, so that we observe
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Thus, the quantity xb
4 measures the strength of Coulomb coupling between electrons 

and ions relevant to the MI transitions, as it represents a ratio between a binding 
energy of a hydrogen atom and a kinetic energy of a free electron,.

The term inside the braces in the formula (7.6), a steeply increasing function of 
xb, describes the enhancement of scattering due to the strong e-i Coulomb coupling. 
In the low-density (rs ≫ 1) limit, however, the IRS effects should vanish since the 
probability of finding electrons within a Bohr radius of an atom is small; the factor 
exp( )-Crs

D  accounts for such an effect.
Those analytic formulae retain the following features: In the classical (θ ≫ 1) and 

weak-coupling (Γ ≪ 1) case, (7.6) reproduces the Debye–Hückel result (7.3) since ζDH ≪ 1 
and ζBorn ≪ 1. In the degenerate (θ ≪ 1) and strong-coupling (Γ ≫ 1) case, LE ≈ αE/2ζBorn 
and LT ≈ αT/2ζBorn, since 1 ≪ ζBorn < ζDH. The transport cross-section Qm(kF) obtained 
from ρE via a Drude formula,
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is thus proportional to Q km F
Born ( ) of (7.5); the Wiedemann–Franz relation (e.g., Ichimaru, 

2004a),
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is satisfied.
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7.2 � ULTRAHIGH-PRESSURE METAL PHYSICS EXPERIMENTS
Weir, Mitchell, and Nellis (1996) compressed molecular fluid hydrogen to pressures 
ranging 0.93–1.80 Mbar by shock wave reverberation between insulating Al2Os anvils 
(Figure 7.1) and thereby measured the pressure and the electric resistivity attained 
in seven runs of hydrogen compression/metallization experiments with the data, as 
exhibited in Figure 7.2. These authors then interpreted the experimental data in terms 
of a continuous transition from semiconducting to metallic diatomic fluids associated 
with a closure of a semiconductor band gap Eg, near 1.4 Mbar.

Such an interpretation, however, contradicts against any of the theoretical pre-
dictions (Wigner & Huntington, 1935; Ceperley & Alder, 1987; Saumon, Chabrier, 
& Van Horn, 1995; Magro et al., 1996), which would foresee first-order insulator-to-
metal transitions from molecular to monatomic hydrogen. On the basis of the equa-
tions of state described in Chap. 6 and the electric resistivity of dense hydrogen 
near the MI transitions in Sec. 7.1, it has been shown that those experimental results 
can be interpreted consistently with the phase diagram of hydrogen exhibiting the 
first-order MI transitions in Figure 6.1 as well as in Table 6.1 (Kitamura & Ichimaru, 
1998).

7.2.1 � INTERPRETING THE EXPERIMENTS

In interpreting the experiments, it is useful first of all to examine the relevant time 
scales in the compression and metallization processes involved. Let the thickness of 
the compressed hydrogen be ξ. Typical values of ξ in the experiments (see Figure 7.1) 
are on the order of 100 µm. A hydrodynamic or compression time, τH, estimated as ξ 
divided by a sound velocity may take on a value on the order of 10 ns.

FIGURE 7.1  Shock-compression experiment: A time-resolved side-on radiograph of a laser-
shocked D2 cell. Position of the pusher (Al) and the evolving shock front are measured as 
functions of time. After Da Silva et al. (1997).
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An electronic or ionization time, τE, estimated as ξ divided by the Fermi velocity, 
that is, the Planck constant times the Fermi wave number kF, may take on a value of 
about 60 ps. Since τE ≪ τH, we remark that metallization develops “instantaneously” 
in a manner analogous to electric breakdown.

In a case where the metallization is partial, the heavy (metal) component ρpl, 
deposited uniformly in the volume, should in principle phase separate from the light 
(insulator) component ρins by gravity. Since a maximally possible gravitational dis-
placement may be estimated at its free-fall value, g Ht2 1» fm, where g ≈ 980 cm/s2, we 
find the phase separation predicted in Figure 6.1 or in Table 6.1 cannot actually mate-
rialize in the experiments; the hydrogen matter may remain in a uniform (transient) 
state with the mass density, ρm = ρpl + ρins.

7.2.2 � COMPRESSION AND METALLIZATION

In light of these quantitative examinations, we may portray the shock-metallization 
experiments in two sequential stages:

Compression: In a typical experiment, hydrogen (with a total mass of about 20 mg) is 
compressed from the state (P ≈ 1 bar, T ≈ 20 K) through reverberating shock imparted 
by an Al-Al2O3 impactor. An impactor with a mass of 2–3 g and a velocity of 5–6 µm/ns,  
which are typical experimental parameters, carries a kinetic energy on the order of 

FIGURE 7.2  Values of the pressure and the electric resistivity measured in seven runs of 
hydrogen compression/metallization experiments. After Weir, Mitchell, and Nellis (1996).
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50 kJ. The hydrogen pressure takes on its maximal value when the state of hydrogen 
reaches the insulator side of the MI transitions; the pressures measured in the experi-
ments (P = 1.0–1.5 Mbar) correspond to these maximal values.

The time for such a compression is several times τH. Here, change in the enthalpy 
stems mostly from the hydro-mechanical contribution in (6.19).

Metallization: As metallization progresses in a time τE subsequent to that maxi-
mal-pressure state, the entropy, the temperature, and the enthalpy of the hydrogen 
increase. The efficiency of the metallization involves delicate matching between these 
changes and the dynamic conditions of the compression cell.

We observe in particular that the entropy increment through metallization is con-
siderably large in Table 6.1 and that the pressure tends to decrease due to a tempera-
ture increase by metallization in the experiments. Hence, the endothermic increment 
ΔW (>0) must have come from “thermal” contribution (i.e., the integral of TdS, with 
the change in the entropy dS stemming from redistribution in the microscopic elec-
tronic states) rather than from a “hydrodynamic” contribution (i.e., the integral of 
VdP, which is negative).

A shock (and a diamond-anvil) compression, being hydrodynamic in nature, does 
not provide optimum conditions for such metallization; the enthalpy has increased 
only by ~0.3 kJ through the metallization experiments. We remark that a shock analy-
sis of the Rankine–Hugoniot type is not applicable to such a non-hydrodynamic pro-
cess in a short time-scale of τE.

Thus, to achieve efficient metallization, an additional physical mechanism such as 
injection of intense, ultra-short laser pulses into compressed hydrogen would have to 
be considered. We shall come back to this subject later, in Sec. 9.5.

7.2.3 � EXAMINING THE DATA

The resistivity measured in a given experiment provides a measure of metalliza-
tion attained. In all the experimental cases analyzed here, the metalized hydrogen 
is in a state of uniform, partially ionized matter consisting of electrons, protons, and 
molecules.

We estimate that the contributions of molecular scattering fall within the uncer-
tainties (25%–50%) of the measured resistivity; the dominant cause of the resistivity 
is the Coulomb scattering between electrons and ions. The partial mass density ρpl 
of the metalized hydrogen may thus be assessed from the measured resistivity by 
the formula (7.1) of the Coulomb resistivity for a fully ionized hydrogen plasma; the 
results are shown in Figure 7.3.

We find that ρpl can be determined almost independent of the temperature since 
the carrier electrons are degenerate. The strong density dependence, proportional to 
ρpl

−2.5, of the theoretical resistivity reveals the significance of accounting for the strong 
e-i coupling beyond the Born approximation, a feature missing in Weir, Mitchell, and 
Nellis (1996).
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7.2.4 � THE FIRST-ORDER MI TRANSITIONS JUSTIFIED

The density ρpl is then connected to the pressure in the final state by recognizing the 
(negative) Coulomb pressure—Eq. (5.19c)—in dense metalized hydrogen is the major 
source of the decrease in the pressure. This decrease may thus be set equal to
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which then determines the pressure Pmet in the metalized state.
The parameter α would depend on an efficiency of energy transfer from an Al-Al2O3 

impactor to the H2 system through metallization. Since information on α is not avail-
able, we have chosen α = 0.02 as its magnitude, which ensures the endothermic nature 
of metallization (i.e., ∆W > 0) for each of the seven runs of the experiments.

Finally, the mass density can be obtained through the relation,
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FIGURE 7.3  Electric resistivity vs. carrier density in hydrogen plasmas, calculated at T = 1000 
K and 3000 K, by the theoretical formula (7.1). The dotted curve represents γ ≡ d dEln / lnr rpl 
computed at T = 3000 K. The solid circles refer to the experimentally determined resistivity 
(cf. Figure 7.2) for runs 1–7 (Weir, Mitchell, & Nellis, 1996) plotted on the theoretical curves at 
T = 3000 K.
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Figure 7.4 depicts the maximum-pressure states and the final metalized states so 
determined for the runs 1–7 of the experiments (Weir, Mitchell, & Nellis, 1996); the 
corresponding thermodynamic quantities are listed in Table 7.1 for the runs 1, 3, 5, 7.

For comparison, also plotted in Figure 7.4 are the theoretical adiabats starting from 
the initial conditions: P = 1 bar, T = 20 K (molecular fluid); P = 1 bar, T = 10 K (molecular 
solid). The experiments have been conducted under the molecular-fluid initial condi-
tions and we observe the adiabat connects them to a state with P = 2.2 Mbar, T = 530 
K, ρm = 0.79 g/cm3 on the insulator side of the MI coexistence curves. We observe that 
each of the temperatures at the experimental points consistently stay above 530 K at 
the end point of the adiabat; the excess then measures the extent to which extra heat-
ing is incurred by non-adiabaticity during the shock compression.

It has thus been shown that all the experimental data displayed in Figure 7.2 can 
be placed consistently with the phase diagram (Figure 6.1) of hydrogen exhibiting the 
first-order MI transitions.

7.3 � JOVIAN INTERIORS AND EXCESS INFRARED LUMINOSITY
The interiors of giant planets (Jupiter, Saturn, Uranus, Neptune) offer important 
objects of study in the condensed-matter physics of hydrogen. Models for the internal 

FIGURE 7.4  Plots of the initial (insulator) and final (metalized) states assessed for the experi-
ments (Weir, Mitchell, & Nellis, 1996). The dashed and chain curves represent the theoretical 
adiabats starting from the initial conditions: P = 1 bar, T = 20 K (molecular fluid); and P = 1 bar, 
T = 10 K (molecular solid), respectively (Kitamura & Ichimaru, 1998).
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structures of these planets were proposed on the bases of the thermodynamic and 
transport properties of the interiors, the surfaces, and the atmosphere coupled with 
observational data such as gravitational harmonics (Stevenson, 1982; Hubbard & 
Marley, 1989).

7.3.1 � STRUCTURE OF JUPITER

Typically, Jupiter has the radius RJ ≈ 7 × 104 km, some 11 times that of the Earth and 
approximately 1/10 of the solar radius, and the mass MJ ≈ 1.90 × 1030 g, some 300 times 
that of the Earth and approximately 1/1000 of the solar mass. Model ranges of the 
mass density, the temperature, and the pressure of its interiors, consisting of the cen-
tral “rock,” the “metal” hydrogen with a few percent (in molar fraction) admixture of 
helium, are displayed in Figure 1.1.

As we noted in Sec. 1.1.1, the visible luminosity of the bright planet Jupiter, in fact, 
originates from solar radiation reflected from its surface, with albedo at 0.35. Jupiter 
has been known to emit radiation energy in the infrared range, approximately 2.7 
times as intense as the total amount of radiation that it receives from the Sun. By 
observation through terrestrial atmospheric transmission windows at 8−14 µm 
(Menzel, Coblentz, & Lampland, 1926) and 17.5−25 µm (Low, 1966), Jupiter has been 
known to be an unexpectedly bright infrared radiator. This feature has been recon-
firmed quantitatively by a telescope airborne at an altitude of 15 km and through 
flyby measurements with Pioneer 10 and Pioneer 11 spacecraft. For Jupiter, the effec-
tive surface temperature determined from integrated infrared power over 8 to 300 
µm was 129 ± 4 K, while the surface temperature calculated from equilibration with 
the absorbed solar radiation was 109.4 K (Hubbard, 1980); the balance needs to be 

TABLE 7.1  �Thermodynamic Quantities Estimated at the Initial (Insulator) States and 
Their Increments in the Final (Metalized) States, in the Runs, 1, 3, 5, 7, for 
Hydrogen of the LLNL Experiments (Weir, Mitchell, & Nellis, 1996). 
Chemical Potential (μ) and Specific Enthalpy (w) Are in Temperature Units 
per Mass of a Hydrogen Atom; Specific Entropy (s) in Units of kB Per Mass 
of a Hydrogen Atom

Run 1 3 5 7
P (Mbar)       1.0   −0.002         1.24   −0.013         1.41  −0.067         1.80  −0.067
T (103 K)         2.97   0.01         2.31   0.03         1.96   0.12         1.22   0.11
μ (103 K) −162.6 −0.11 −154.7 −0.38 −150.4 −1.48 −141.3 −1.34
s         4.40   0.08         3.48   0.37         2.96   1.19         1.87   1.05
w (103 K) −149.5   0.18 −146.6   0.59 −144.6   1.34 −139.0   0.27
ρ (g/cm3)           0.516     0.004           0.583     0.020           0.623     0.062           0.712     0.056
ρpl/ρm    0     0.032    0     0.135    0     0.402     0     0.359

Note:	 Chemical potential (μ) and specific enthalpy (w) are in temperature units per mass of a hydrogen atom; 
specific entropy (s) in units of kB per mass of a hydrogen atom.

Source:	 Weir, Mitchell, & Nellis, 1996
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accounted for by internal power generation; hence, the issue of excess infrared lumi-
nosity of Jupiter.

In these connections, we particularly note the precise measurements of the 
Jovian gravitational field made recently by NASA’s Juno spacecraft (Fortney, 2018). 
Adriani et al. (2018) reported observation of clusters of cyclones encircling Jupiter’s 
poles. Iess et al. (2018) reported measurement of Jupiter’s asymmetric gravity field. 
Kaspi et al. (2018) reported observation of Jupiter’s atmospheric jet streams extending 
thousands of kilometers deep. Guillot et al. (2018) reported on a suppression of dif-
ferential rotation in Jupiter’s deep interior.

7.3.2 � ORIGINS OF THE EXCESS LUMINOSITY

Over the evolution period (~4.6 × 109 yr) of Jupiter, the estimated excess luminosity, 
Lex ≈ 4.6 × 1017 W, would amount to the total released energy of approximately 6.5 × 1034 J.  
To account for the source of such an excess infrared luminosity, theoretical models 
such as “adiabatic cooling” (Hubbard, 1968; Graboske et al., 1975; Stevenson & Salpeter, 
1976) and “gravitational unmixing” (Stevenson & Salpeter, 1976; Smoluchowski, 1967) 
have been considered. Here, we apply the phase diagram (Figure 6.1) and the elec-
tric-resistivity calculations of Sec. 7.1 to the issues of Jovian internal structure and 
luminosity.

7.3.3 � THE MI TRANSITIONS AND LUMINOSITY

The first-order MI transitions in hydrogen predict the existence of a boundary layer 
near the surface of Jupiter across which the mass density and resistivity change discon-
tinuously (Figure 1.1). Assuming the temperature of the boundary layer at 6.5 × 103 K  
(Van Horn, 1991; Kitamura & Ichimaru, 1998), we calculate the density in the outer 
insulator side to be 0.34 g/cm3 and that of the inner metal side to be 0.54 g/cm3.

Some 4.6 billion years ago, when our solar system was formed, the temperature 
was so high that hydrogen in Jupiter was in the ionized metallic state. The outer insu-
lator side has then been formed over the evolution period through metal-to-insulator 
transitions.

The mass of the outer (molecular hydrogen) layer so formed was estimated to 
be Mins ≈ 0.1xMJ (Hubbard & Marley, 1989). Hence, the total amount of latent heat 
released through the MI transitions, that is, the thermal contributions in (6.19), is 
M m s k Tp Bins MI MI/( )D , where the entropy increment ∆sMI = 1.1 and TMI = 6.5 × 103 K 

(Table 6.1). These approximate calculations may thus indicate that the total latent heat 
would amount to 1.1 × 1034 J, possibly accounting for about 1/6 of the energy in the 
excess infrared luminosity.

A final solution to these issues of transformation and transfer of energy, how-
ever, should await further investigations into the internal structures and evolution 
of Jupiter.
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8
STELLAR AND PLANETARY 

MAGNETISM
Astrophysical magnetic phenomena include those related to degenerate stars (e.g., 
Chanmugam, 1992), solar flares (e.g., Parker, 1979; Tsuneta, 1995), and giant planets 
(e.g., Stevenson, 1982). Surface magnetic fields of magnetic white dwarfs range 106–109 
gauss. Average strengths of magnetic activities in the solar chromosphere are on the 
order of 50 gauss.

Hydrogen is the major constituent in astronomical objects such as stars and giant 
planets. Stellar and planetary magnetism may thus be strongly influenced by the states 
and phase transformations in hydrogen matter such as metallization and magnetization.

8.1 � JOVIAN MAGNETIC ACTIVITIES
The structure of Jupiter was illustrated in Figure 1.1 along with the phase diagrams 
of hydrogen exhibited in Figure 6.1. It is an astronomical object with a radius of  
RJ ≈ 7.14 × 104 km and a total mass of MJ ≈ 1.99 × 1033 g.

The dominant field contribution of the planet Jupiter for the external observer is 
the dipole of magnitude 4.2 gauss· RJ

3  and a tilt of ~10° to the rotation axis (Smith, 
Davis Jr., & Jones 1976).

Closer to the planet, however, the multipole contributions are so large that an addi-
tional dipole term at a depth of ~2 × 104 km appears to be implied (Elphic & Russel, 1978).

8.1.1 � METALLIC HYDROGEN IN JUPITER

The first-order metal–insulator (MI) transitions in hydrogen may predict the exis-
tence of a boundary layer inside Jupiter across which the mass density and the resis-
tivity change discontinuously, as Fig. 1.1 implies.

Statistical Physics of Dense Plasmas



 104        Statistical Physics of Dense Plasmas﻿

Stellar and Planetary Magnetism

With the estimates of Jovian parameters across the MI boundary in Figure 6.1 and 
Table 6.1, we calculate the electric resistivity ρE of the metallic hydrogen inside the MI 
discontinuity to be 1.37 × 10−4 Ω cm (Kitamura & Ichimaru, 1995), only about 140 times 
greater than that of copper.

8.1.2 � MAGNETIC REYNOLDS NUMBER

Highly conductive liquid-metallic hydrogen in motion is capable of distorting and 
amplifying the magnetic field configurations of stars and planets. Hydromagnetic 
motion of the magnetic fields in a plasma may be described by the induction equation,
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The first term on the right-hand side describes the convective effect of a conductive 
fluid dragging and stretching the magnetic lines of force; the second term, the dis-
sipative effect due to the decay of electric current by the resistivity (e.g., Ichimaru, 
2004a).

The magnetic Reynolds number Rm in magnetohydrodynamics is a number repre-
senting the ratio between the first term and the second. The larger the Rm, the more 
effectively are the magnetic activities and field strengths sustained and amplified by 
the fluid motion.

The magnetic Reynolds number associated with this resistivity and Jupiter’s self-
rotation may then be estimated as
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where ωJ (=15.2 rad/day) represents the angular velocity of Jupiter’s self-rotation.

8.1.3 � MAGNETIC ACTIVITIES

This value of Rm is to be compared with a corresponding estimate ~1.0 × 108 for the 
solar magnetic activities (e.g., Ichimaru, 1996). Such a comparison implies that prom-
inent magnetic activities may be amply sustained near Jupiter by the presence of 
highly conductive metallic hydrogen inside its MI boundary.

We remark, on the other hand, that there cannot be expected any electrically con-
ductive (i.e., ionized) material in the frigid (T ≈ 129 K) conditions of the Jovian surface 
and in its atmosphere, a feature drastically in contrast with those in the solar chromo-
sphere at T = ~6000 K, where a considerable amount of ionized gas may exist.

The first-order MI transitions in dense hydrogen may thus be looked upon as an 
element of physics that is essential to the Jovian magnetic activities.
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8.2 � FERROMAGNETIC AND FREEZING 
TRANSITIONS IN METALLIC HYDROGEN

In addition to the metal–insulator transitions treated above, another class of phase 
transitions may be found for hydrogen in metalized states. As with the cases of itin-
erant electrons or the electron liquids (Ceperley & Alder, 1980; Ichimaru, 2000), the 
protons in metallic hydrogen may be in a Wigner crystalline state as well as in a 
paramagnetic or a ferromagnetic fluid state.

We thus consider these issues of ferromagnetic and/or freezing transitions and 
thereby elucidate the associated phase diagrams for metallic hydrogen (Ichimaru, 2001).

8.2.1 � EQUATIONS OF STATE WITH SPIN POLARIZATION

Theoretical approaches to these issues begin with evaluations of the free energies as in 
(6.11). In the present case, the degrees of ionization and molecular dissociation are to 
be set at Z = 1  and αd = 0; instead, the spin polarization, ζ = (n↑ − n↓)/n, with n↑ and n↓  
denoting the partial number densities of spin up and spin down protons (where 
n = n↑ + n↓) enters as a new parameter.

We thus consider the total free energy, ftot (n, T; ζ), in place of (6.11). The degrees of 
spin polarization and the resultant magnetic states are determined through minimi-
zation of the total free energy with respect to the variation of ζ.

8.2.2 � PHASE DIAGRAMS WITH SPIN POLARIZATION

Phase diagrams of hydrogen describing magnetization and solidification of metallic 
hydrogen are obtained in Figure 8.1 for higher density and finite temperature regime 
(Ichimaru, 2001).

Table 8.1 lists the values of the physical parameters at the fluid–solid critical point 
(CFS) and the magnetic critical point (MC) in the phase diagrams of Figure 8.1.

8.3 � NUCLEAR FERROMAGNETISM WITH 
MAGNETIC WHITE DWARFS

The white dwarf represents a final stage of stellar evolution, illustrated in Figure 1.2. 
It corresponds to a star of about one solar mass compressed to a characteristic radius 
(RWD) of approximately 5000 km and an average density of some 106–107 g/cm3.

8.3.1 � HYDROGEN WITH MAGNETIC WHITE DWARFS

The interior of a white dwarf consists of a multi-ionic condensed matter composed of 
C and O as the main elements and Ne, Mg, Si, …, Fe as trace elements. Observationally, 
a class of white dwarfs (DA) possesses hydrogen-rich atmosphere and envelopes.
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Of all the isolated white dwarfs surveyed, only about 3%–5% have observable 
magnetic fields that are in the range ~1–500 MG. The surface magnetic fluxes of these 
white dwarfs, ~BRWD

2  = (1024–5 × 1026) gauss cm2, are regarded as similar in magnitude 
to those of the magnetic Ap stars, a spectroscopic type of stars that exhibit intense 

FIGURE 8.1  Phase diagrams of metallic hydrogen describing partial spin ordering and 
Wigner crystallization. The thick solid curve depicts the phase boundary between fluid 
and solid, with CFS designating the associated critical point. The dashed and chain curves 
describe the conditions at a constant strength magnetization, with the numerals denoting the 
decimal exponents of the field strength BM in G; MC designates the magnetic critical point. 
The diamond markers plot the observed surface-field strengths (Bsurface) vs. the effective sur-
face temperatures (Tsurface) for the magnetic white dwarfs (Ichimaru, 2001).

TABLE 8.1  �Physical Parameters at the  
Fluid–Solid Critical Point (CFS) and 
the Magnetic Critical Point (MC) in 
the Phase Diagrams of Figure 8.1 
for the Liquid-Metallic Hydrogen 

CFS MC

ρm (g/cm3) 4.0 × 103 1.4 × 106

T (K) 6.6 × 103 6.6 × 105

BM (G) 2.6 × 105 8.0 × 106

Note:	 Ichimaru 2001
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hydrogen lines. Such Ap stars may therefore be looked upon as probable progenitors 
of the magnetic white dwarfs (Chanmugam, 1992; Weisheit, 1995).

8.3.2 � ORIGIN OF STRONG MAGNETIZATION

The ferromagnetic transitions in dense metallic hydrogen as elucidated in Figure 8.1 
may offer an ingredient of physics relevant to the mechanisms for the origin of strong 
magnetization in the magnetic white dwarfs (Ichimaru, 1997). The magnetic critical 
point occurs at a temperature of 6.6 × 105 K, and the strengths of induced magnetiza-
tion may range as high as 3 × 107 G along the Bmax line of Figure 8.1.

The plots in Figure 8.1 of the magnetic-field strengths (Bsurface) versus the effec-
tive blackbody temperatures (Tsurface) on the surfaces of 25 magnetic white dwarfs 
observed (Weisheit, 1995) have shown that except for a few cases (with the field 
strengths exceeding the theoretical maximum by a factor of 1~15) the observed field 
strengths fall within the predicted range and that the surface temperatures are lower 
than the critical temperature by approximately two orders of magnitude.

The hydrogen densities (~104–106 g/cm3) required for magnetization may be 
expected in an outer shell of a hydrogen-rich white dwarf at some 70%–90% of the 
stellar radius, where the mass densities may take on values lower by three or more 
orders of magnitude than those in the core.

Solidification of metallic hydrogen, on the other hand, may not take place in such 
a white dwarf, since all the Tsurface values exceed the temperature at CFS.

Figure 8.2 may possibly provide supporting evidence for hydrogen-rich fluid 
atmosphere with the magnetic white dwarfs.

8.3.3 � FIELD AMPLIFICATION BY STELLAR ROTATION

For those white dwarfs with super-strong magnetic fields exceeding 3 × 107 G, a maxi-
mum field strength obtainable by the ferromagnetism alone in metallic hydrogen, a 
separate amplification mechanism such as a “dynamo” would have to be called for 
(e.g., Chanmugam, 1992), where the nuclear ferromagnetism in Figure 8.1 may pro-
vide “seed” fields for such an amplification.

The electric resistivity ρE calculated for the metallic hydrogen at the critical condi-
tions (MC) takes on the value, 6.0 × 10–12 Ω·cm (Kitamura & Ichimaru, 1996). The mag-
netic Reynolds number associated with a rotating white dwarf is thus evaluated as

	 R
R

c
R

m
E

= = × 











4
3 8 10

5000 2

2

2
16

2
π ω

ρ
ω

π
WD WD WD WD

km day
.

/
, 	 (8.3)

where ωWD is the angular velocity of a white dwarf (cf., Figure 8.2).
Comparing this number with the corresponding estimates, ~1.2 × 1012 and ~1.0 × 108, 

for Jovian and solar magnetic activities (Ichimaru, 1997) (where the ferromagnetic seed 
fields are not available) respectively, we may conclude that considerable strengths of 
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the magnetic fields may be sustained around a white dwarf by the presence of highly 
conductive, ferromagnetic hydrogen in the outer shell.

These observations may possibly account for some of the questions raised by 
Weisheit (1995) in regard to apparent non-correlation between surface magnetic 
fields, temperatures, and rotation periods with magnetic white dwarfs.

FIGURE 8.2  Rotation period of isolated magnetic white dwarfs as a function of polar mag-
netic field and as a histogram on right ordinate. An alternative explanation of the five appar-
ently static stars is that they are rotating very rapidly or their fields are axisymmetric. Filled 
circles correspond to H-rich atmosphere; open circles correspond to mixed or unknown com-
position (Schmidt & Norsworthy, 1991).
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9
NUCLEAR FUSION IN 

METALLIC HYDROGEN
Nuclear reactions in hydrogen and its isotopes, deuterium and tritium, are the 
principal subjects in the development of fusion reactors. Condensed-matter 
effects including thermodynamics and phase transitions drastically affect the 
rate of nuclear reactions in ultra-dense hydrogen (e.g., Ichimaru, 1993; Ichimaru & 
Kitamura, 1999).

In metallic substances under ultrahigh pressures, electrons act to weaken or screen 
Coulomb repulsion between the atomic nuclei. The effects become so conspicuous 
that rates of nuclear reactions at relatively low temperatures take on values indepen-
dent of the temperature. Cameron (1959) coined the term “pycnonuclear” reactions 
(from the Greek, πψκvoσ, meaning “compact, dense”) to describe such nuclear pro-
cesses. These reactions are considered to be applicable to the processes in a white-
dwarf progenitor of a supernova, as illustrated in Figure 1.2.

In addition to such screening effects by electrons, the strong spatial correlation 
between atomic nuclei in dense plasmas due to their Coulomb repulsion, the very 
cohesive effect manifested in freezing transition, acts to enhance the reaction rates 
through the effective reduction in overall internuclear repulsion. Such an effect of 
enhancement in dense fluids increases steeply as the temperature is lowered. The 
reaction rates in solids, on the other hand, increase sharply with the temperature, as 
the rates depend sensitively on the amplitude of atomic vibration. Hence, a maximum 
enhancement may be attained near the conditions of freezing.

In a white-dwarf progenitor of a type Ia supernova, enhancement by a factor of 
thirty to forty orders of magnitude may thus be anticipated in the rate of nuclear 
reactions (Salpeter & Van Horn, 1969; Ichimaru, 1993; Ichimaru & Kitamura, 1999). 
Virtually no significant enhancement is expected, however, in high-temperature, 
relatively low-density states with the solar interior or with the inertial-confinement 
fusion (ICF) plasmas.

Statistical Physics of Dense Plasmas



 110        Statistical Physics of Dense Plasmas﻿

Nuclear Fusion in Metallic Hydrogen

Construction of the overall phase diagrams describing the metal–insulator (MI) 
and fluid–solid transitions is therefore pertinent to nuclear fusion in metallic hydro-
gen under ultrahigh pressure as well; such may possibly lead to a scheme of a “super-
nova on the Earth” for fusion studies. The phase diagrams in Figure 6.1 may most 
manifestly illustrate these features of nuclear reactions in dense hydrogen.

9.1 � THERMONUCLEAR AND PYCNONUCLEAR REACTIONS
For generality, we consider dense binary-ionic substances with mass density ρm, pres-
sure P, and temperature T, consisting of nuclear species with charge number Zi, mass 
number Ai, and molar fraction xi (i = 1, 2). The number density of the nuclei of the spe-
cies “i” and that of electrons are then given by
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where mN = 1.6605 × 10−24 g denotes the average mass per nucleon. The ion-sphere 
radius of (1.6) may here be extended to encompass the binary-ionic systems, so that 
we define
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9.1.1 � SCATTERING BY THE COULOMB POTENTIAL

Events of scattering between the nuclei “i” and “j” via the potential, Wij(r), with rela-
tive velocity v and reduced mass,
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may be described by the wave functions,
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for the colliding pairs at an inter-nuclear separation r; here, Pl(cosϑ) denote the 
Legendre polynomials (e.g., Landau & Lifshitz, 1965). The wave functions obey the 
Schrödinger equation,
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where E = (µij/2)v2 denotes the center-of-mass energy.
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9.1.2 � PROBABILITY OF PENETRATION—BARE COULOMB REPULSION

The penetration probability p(E) of the colliding nuclei to a nuclear reaction radius rN, 
proportional to |Ψij(rN)|2, may be obtained by the solution to the Schrödinger equa-
tion. With the bare Coulomb potential,
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substituted in (9.5), the essential parameters characterizing Coulomb scattering in the 
short ranges are the nuclear Bohr radius,

	 r
Z Z e

ij
ij i j

* ,= �2

22m
	 (9.7)

and the Gamow energy,
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The events of scattering are governed primarily by the effective potential between 
the nuclei in the short-range domain, where the potential may be regarded as isotro-
pic and Coulombic, irrespective of the inter-particle configurations. Calculation of the 
reaction rates may be facilitated by the observation that the major contributions to the 
penetration probabilities arise from the s-wave (l = 0) scattering between the reacting 
nuclei, as wave functions in a spherically symmetric potential with azimuthal quan-
tum number l are proportional to rl in the short ranges.

Since one can generally assume that the nuclear reaction radius rN < rij
*, the s-wave 

scattering is the major contribution to the reaction rates; hence, rN ≈ 0 may be taken for 
the calculation of the penetration probabilities, p(E). In these connections, one notes 
the short-range cusp condition with Coulomb scattering,
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The usual boundary conditions in a treatment of these scattering problems assume an 
incident plane wave in the z direction. The asymptotic (r → ∞) form of the Coulomb 
wave function is then expressed as (e.g., Landau & Lifshitz, 1965)
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is the angular function of the scattering wave,
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the radial coordinate r with respect to the scattering center represents the distance 
between the reacting nuclei, and Γ (z) refers to the gamma function defined by (AIV.8).

With a normalization such that
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over a spherical volume Ω with a radius far greater than 2aij, the incident flux at  
z → −∞ is given by
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The penetration probability or the square of the wave function at the origin then 
takes on the values
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This function approaches unity in the high-energy limit, E >> EG, as it should.

9.1.3 � CROSS-SECTION FACTOR

In the low-energy (E << EG) processes of astrophysical interest, the penetration prob-
ability of the Coulomb barrier vanishes exponentially as
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Hence, one singles out this exponential factor, representing a purely Coulombic 
effect, from the cross-section σij(E) for the nuclear reactions between species i and j, 
and thereby introduces the cross-section factor, Sij(E), via (Salpeter, 1952; Barnes, 1971; 
Fowler, 1984)
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Cross-section factors therefore quantify the proficiency of reactions intrinsic to the nuclei.
For nonresonant nuclear reactions, Sij(E) are functions slowly varying with E and 

may be expressed as
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For isotopes of hydrogen, we list in Table 9.1 the values of the cross-section factors 
and the energies Qij released per reaction for the reactions:

	 d d t p+ ® + , 	

	 d d n+ ® +3 He , 	

	 t d n+ ® +4 He . 	

9.1.4 � PROBABILITY OF PENETRATION—SCREENED 
COULOMB REPULSION

In a dense metallic system, electrons act to screen the Coulomb repulsion between 
atomic nuclei. The potential Wij(r) of scattering in (9.5) now deviates from the purely 
Coulombic form (9.6) and takes on values,
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For non-relativistic electrons (rs ≥ 0.1), we employ the local-field corrections in εe(k,0) 
(Ichimaru & Utsumi, 1981, 1983), accounting for the strong Coulomb-coupling effects 

TABLE 9.1  �Nuclear Reaction Cross-Section Factors and Qij Values for Isotopes of 
Hydrogen

Reactions
S(0) 

(MeV·barn)
Sʹ(0)/S(0) 
(MeV−1)

Sʺ(0)/S(0) 
(MeV−2)

Qij 
(MeV)

d(d,p)t 0.0530 4.95 – 4.033
d(d,n) 3He 0.0530 4.95 – 3.269
t(d,n) 4He 11.0 13.8 623 17.590

Note:	 1 barn = 10−24 cm2
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of Sec. 2.2.7 between electrons, and evaluate the short-range screening distance Ds of 
the electrons, defined by (6.13), as
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For relativistic electrons (rs < 0.1 and θ << 0.1), the screening parameter in (6.14) has 
been computed (Ichimaru & Utsumi, 1981, 1983) with Jancovici dielectric function 
(Jancovici, 1962) as
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It is noteworthy that the screening length (in units of a) takes on the finite value 5.8 
in the limit of high densities (rs → 0), while (9.15) and the nonrelativistic Thomas–
Fermi length as obtained from (2.45) diverge in the same limit. Due to such relativistic 
effects, the electron screening may thus remain considerable in dense stellar materials.

Substituting (9.14), rather than (9.6), in (9.5), we find that the pycnonuclear penetration 
probability is now given by
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Here,

	 E
Z Z e

D
s

i j

s
=

2

	  (9.18)

is the Coulomb energy associated with the screening distance. It should be remarked 
here that p(E) in (9.17) takes on a non-vanishing value,
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in the limit, E → 0.
This is a feature unique in the pycnonuclear reactions, markedly different from 

the thermonuclear case of (9.12); the limiting value (9.19) decreases exponentially as 
the reduced mass increases. It offers the very reason why the proton-deuteron (p-d) 
pycnonuclear reactions should be pursued in metallic hydrogen.
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In Figure 9.1, we plot and compare the penetration probabilities, the Boltzmann 
distributions,
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and the contact probabilities, C(E) = p(E)·f(E), as functions of log E(K), the logarithmic 
energy in temperature units, for the deuterium-tritium (d-t) thermonuclear reactions 
at T = 108 K and for the p-d pycnonuclear reactions at T = 450 K with the electron den-
sity, ne = 2.4 × 1024 cm3.

9.1.5 � RATES OF THERMONUCLEAR REACTIONS

The rates of thermonuclear reactions stemming from those scattering processes may be 
calculated by the thermal averages sij E v( )  of (9.13) over the Boltzmann distribution,
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FIGURE 9.1  Dashed and dotted curves: thermonuclear (d-t, at 108 K) vs. solid curves: pycno-
nuclear (p-d, at 450 K with ne = 2.4 × 1024 cm−3) reactions; p(E) denotes the penetration prob-
ability through the Coulomb barrier between a pair of reacting nuclei with a center-of-mass 
energy, E(K), in temperature units; f(E), the Boltzmann distribution; C(E) = p(E)·f(E), a con-
tact probability between a pair of reacting nuclei; A·C(E), enhanced contact probability with  
A (= 5.7 × 1042) denoting the enhancement factor (9.32).
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The result yields the Gamow rates (Gamow & Teller, 1938; Thompson, 1957) of the 
thermonuclear reactions,
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Here, Sij refers to a thermal average of the cross-section factor, δij denotes the Kronecker 
delta distinguishing between the cases with i ≠ j and with i = j;
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refers to the Gamow exponent. The reaction rate (9.21) contains a factor exp(−τij). The 
magnitude of this Gamow exponent increases with the charge numbers and/or with 
the reduced masses. The thermonuclear reaction rates vanish exponentially as the 
temperature decreases.

The integration leading to the Gamow rate contains in its integrand a product 
between a steeply rising cross-section σij(E) and a steeply decreasing Boltzmann dis-
tribution fB(E) as functions of E. The product thus exhibits a Gamow peak at the energy,
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The radius rTP of the classical turning point for a colliding pair with the Gamow peak 
energy is given by
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The Sij in (9.21) is thus to be evaluated as Sij(EGP). In Figure 9.1, we observe a Gamow 
peak at E ≈ 3 × 108 K for the contact probability in the d-t thermonuclear reactions.

9.1.6 � RATES OF PYCNONUCLEAR REACTIONS

For the pycnonuclear reactions, where the penetration probability is now given by 
(9.19), the screening temperature, derived from setting Es = EGP, may be expressed as 
(Ichimaru, 1993; Ichimaru & Kitamura, 1999) 
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In the weak screening regime such that T > Ts, the rate of reactions is calculated 
through a perturbative modification of Gamow’s thermonuclear rate. Thus, the 
enhancement factor due to such weak screening is
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The rate of thermonuclear reactions is then calculated as the product between the 
Gamow rate (9.21) and the enhancement (9.26).

In the strong screening regime T < Ts, the pycnonuclear counterpart to this product 
is given by (Ichimaru, 1993; Ichimaru & Kitamura, 1999)
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In this case, the classical turning point is located at rTP = Ds. The screening distance, 
given by (9.15) or (9.16), is virtually independent of T in a dense material, because θ < 0.1.

Contrary to the Gamow rate (9.21), which changes sharply with the temperature 
through τij, the pycnonuclear rate (9.27) is practically independent of the temperature; 
the strong exponential decrease with Ds, the charge product ZiZj, and the reduced 
mass should be noted.

9.2 � SOLAR PROCESSES AND INERTIAL-CONFINEMENT FUSION
In the Sun, nuclear reactions take place most vigorously near the core, where the 
mass density and the temperature of the metallic hydrogen are estimated to be 56.2 
g/cm3 and 1.55 × 107 K (see Figure 6.1).

9.2.1 � INERTIAL-CONFINEMENT FUSION

Terrestrial inertial-confinement fusion researchers are presently attempting to real-
ize conditions analogous to those near the solar core by the compression of d-t fuel 
to mass densities and temperatures on the order of 3–60 g/cm3 and ~108 K; hence, a 
“sun on the Earth.” At such a high temperature, required for the thermonuclear reac-
tions, one anticipates an assortment of dynamic instabilities to overcome during the 
compression process of hydrogen matter.

9.2.2 � THE P–P CHAIN

One of the proton–proton chains, the fundamental nuclear processes in the solar inte-
riors, consists of

	 p p e d p pe( ) ( ), , , ,+ ( )n g 3 43 2He He He 	  
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which altogether yields

	 4 2 2 26 2p e e→ + + + ( )+α υ . .MeV 	  

The cross-section factors Sij and the Qij values are (Bahcall & Ulrich, 1988)

	 S Qpp pp= × =( ) ( )−4 07 10 1 44225. , . ,MeV.barn MeV 	  

	 S Qpd pd= × =( ) ( )−2 5 10 5 4947. . , . ,MeV barn MeV 	  

	 S Q3 3 3 35 15 12 860He He
0

He He10 MeV barn MeV= × =( ) ( ). . , . . 	  

The p–p chain, starting with p(p,e+νe)d, involves a β process and thus is extremely 
slow; the rate of this chain is controlled by these slow processes.

9.3 � ENHANCEMENT OF NUCLEAR REACTIONS 
IN METALLIC FLUIDS

As a progenitor of the type Ia supernova, a white dwarf with interiors consisting of a 
carbon–oxygen mixture can be considered a kind of binary-ionic mixture, with a cen-
tral mass density of 107 to 1010 g/cm3 and a temperature of 107 to several times 109 K 
(Starrfield et al., 1972; Whelen & Iben, 1973). Nuclear runaway leading to supernova 
explosion may take place when the thermal output due to nuclear reactions exceeds 
the rate of energy losses.

9.3.1 � ENHANCEMENT DUE TO COULOMB CORRELATION

In addition to the electronic screening effects manifested in the pycnonuclear pene-
tration probability (9.17), strong Coulomb correlation between atomic nuclei in dense 
matter acts to enhance the reaction rates through an effective reduction of the inter-
nuclear repulsion (e.g., Ichimaru, 1993; Ichimaru & Kitamura, 1999). It is the very cor-
relation effect responsible for the freezing transitions considered earlier in Secs. 5.2, 
5.4, and 6.3, and it is closely related to the Coulombic chemical potentials in dense 
plasmas treated in Secs. 5.2 and 5.3.

The increment of the Coulombic free energy before and after the reaction is 
expressed as

	 DF Z Z Z Zij i j i j= +( ) - ( ) - ( )m m mCoul Coul Coul , 	  (9.28)

where μCoul(Zi) denotes the Coulombic chemical potential of a charge Zi. The incre-
ment before and after the nuclear fusion ∆Fij is a negative quantity, expressing a 
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cohesive effect in Coulombic matter; its magnitude increases proportionally to the 
cubic root of the matter density.

It is instructive at this stage to recall the ion-sphere model (e.g., Ichimaru, 1982) as 
illustrated in Figure 1.5. We construct an ion sphere by picking a particle (an ion with 
the electric charge Ze) in the plasma and by associating with it a sphere of neutraliz-
ing charges that would exactly cancel the point charge of the ion. This sphere has the 
radius a and the electric charge density −3Ze/4πa3. The electrostatic energy of the ion 
sphere is then calculated to be −0.9(Ze)2/a; the increment before and after the nuclear 
fusion is thus −1.057(Ze)2/a in the ion-sphere model (Salpeter & Van Horn, 1969).

9.3.2 � ENHANCEMENT FACTOR

The enhancement factor for the rate of nuclear reactions in dense metallic fluid is 
expressed approximately as
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In the ion-sphere model, it takes on a huge value, exp(1.057Γ), for a strongly coupled 
plasma, as Figure 9.2 explains.

The quantity ΔFij may be calculated more accurately in terms of the ion–ion cor-
relation energies as
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where the so-called “linear mixing law” for the interaction energies, applicable fairly 
accurately to dense plasmas (e.g., Ichimaru, 1993), has been adopted. In (9.29), we 

FIGURE 9.2  Origin of the cohesive force and the enhancement factor in a dense plasma.
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employ a semiclassical expression (5.11) for the ion–ion correlation energy applicable 
for Г >> 1 with spin-independent, quantum-statistical corrections (Ichimaru, 1997),
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Γi is the electron-screened Coulomb coupling parameter for the nuclei with charge 
Zi, that is,
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with ae = (3/4πne)1/3 and
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As we have noted in Sec. 9.1, the rate of nuclear reactions are proportional to the 
statistical averages of penetration or contact probabilities, |ψij(0)|2, which are in fact 
the joint probability densities, gij(r), between nuclei “i” and “j” evaluated at a distance 
of nuclear force, rN (≈0). Enhancement factors for thermonuclear or pycnonuclear 
rates have been calculated through the quantum statistical treatments of such joint 
probability densities (Alastuey & Jancovici, 1978; Ogata, Iyetomi, & Ichimaru, 1991; 
Ichimaru, 1993; Ichimaru & Kitamura, 1999); the results are expressed compactly as
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C1 = 1.1858, C2 = −0.2472, and C3 = −0.07009 (Ichimaru, 1991). Note that the enhance-
ment factor (9.32) depends sensitively on ρm and T; it increases with ρm, and sharply 
as T decreases.

9.3.3 � RATES OF NUCLEAR REACTIONS IN DENSE PLASMAS

In Table 9.2, we list the rate of nuclear reactions Pij (expressed in power per unit mass) 
and the enhancement factor Aij computed for a hydrogen plasma appropriate to the 
solar core, an ICF deuteron-triton plasma with equal molar fractions, dense 12C mat-
ter expected in a white dwarf, and cases of metallic hydrogen with equal molar frac-
tions of protons and deuterons. We observe huge enhancement factors for the “white 
dwarf” and “liquid metal” cases. As we find in Figure 9.1, the net contact probability, 
A·C(E), for the “liquid metal” case may assume a magnitude comparable to that for 
the “ICF” case.

9.4 � “SUPERNOVA ON THE EARTH”
The possibilities of combined utilization of the pycnonuclear p-d reactions at lower 
temperatures and their enhancement due to the strong Coulomb correlation, both 
applicable in ultradense metallic hydrogen near freezing conditions, have led to a pro-
posal of a “supernova on the Earth” scheme for nuclear fusion researches (Ichimaru, 
1991, 1993; Ichimaru & Kitamura, 1998, 1999). The idea is to bring a p-d mixture to a 
liquid-metallic state near solidification, as illustrated in Figure 6.1.

9.4.1 � ADIABATIC COMPRESSION

For a concrete example, let us consider an experimental scheme of the compres-
sion and metallization of a p-d mixture with equal molar fractions to a final state:  
ρm ≈ 6 g/cm3, T ≈ 459 K, P ≈ 50 Mbar (the case “liquid metal 1” in Table 9.2). 

TABLE 9.2  �Rates of Nuclear Reactions and Enhancement

Case Solar Core ICF White Dwarf Liquid Metal 1 Liquid Metal 2
Reactions p-p chain d-t 12C-12C p-d p-d
ρm (g/cm3) 56.2 5 4 × 109 6 9
T (K) 1.55 × 107 108 5 × 107 450 500
Γij 0.040 0.003 87 297 324
log Aij 0.005 0.000 36.02 42.76 50.27
log Pij (W/g) −6.48 19.07 −15.97 0.72 10.54

Note:	 For the Calculations of 12C-12C Reactions in a White Dwarf, the Enhancement Factor Is Given by the Product 
between (9.26) and (9.31); SC-C = 8.83 × 1016 (MeV·bahn) and QC-C = 13.931 (MeV) Have Been Assumed
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As illustrated in Figure 9.1, a considerable rate of enhanced pycnonuclear reactions 
may be expected in such a p-d mixture.

To achieve such an end, we may start from a H2–D2 mixture in a low-entropy, molec-
ular-solid (insulator) state at ~1 bar and ~10 K. As shown in Figure 7.4, we find the initial 
state here is connected by an adiabat to a state with P ≈ 2.4 Mbar, T ≈ 160 K,ρm ≈ 0.84 g/cm3,  
on the insulator side of the MI coexistence curves. A reverberating shock imparted by a 
low-speed (~1 µm/ns) impactor with a kinetic energy ~20 kJ, as depicted schematically 
in Figure 9.3, may thus be utilized for the compression of such a H2–D2 mixture with a 
total mass of ~4.8 mg in a volume of 32 mm3 (=2 mm × 16 mm2), say.

The compression may bring the mixture to a state at ~2.4 Mbar and ~220 K on the 
insulator side of the MI coexistence curves; the enthalpy increment ∆W in such a 
compression process may amount to ~0.9 kJ. Since the impactor speed is lower, we 
expect a departure from the adiabat to an extent lesser than those experienced in the 
Livermore shock-compression experiments (Weir, Mitchel, & Nellis, 1996; Da Silva 
et al., 1997); thus, the shock compression proposed here may be looked upon as a 
technical extension in line with these experiments.

9.4.2 � METALLIZATION

The ingredient indispensable to such a compression/metallization scheme may then 
be an injection of a super-intense, ultrashort laser pulse into the compressed hydro-
gen, at the instant of compression, to ensure an efficient metallization. We estimate 
the enthalpy ΔW necessary for the metallization is approximately 11 J.

Since the laser pulse-width must be significantly shorter than the time for metal-
lization τE (~10 ps), the required laser power should exceed ~1.1 TW. In this regard, the 
scheme may still be looked upon within the range of technical feasibility.

9.4.3 � FEASIBILITY EXPERIMENT

The quasi-adiabatic compression exerted continuously by the slow impactor may 
bring the resultant liquid-metallic hydrogen finally into a further compressed state 

FIGURE 9.3  A schematic diagram of compression/metallization experiments for hydrogen.
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at ~50 Mbar and ~450 K, say, near the freezing conditions; ΔW in this compression 
would be ~3.0 kJ. Contrary to the ultrahigh-temperature ICF plasmas, the dense 
hydrogen in a liquid-metallic state near solidification is a stable object; no dynamic 
instabilities are expected.

In this final state, the estimated fusion power would be ~5.2 W/g (Table 9.2), a 
detectable level for the rate of nuclear reactions. Recent experimental and theoretical 
progress in ultrahigh-pressure metal physics may make such a scheme of detecting 
the astrophysical enhanced pycnonuclear reactions, for the first time in the terres-
trial laboratory, an attractive and realizable project for fusion studies (Ichimaru & 
Kitamura, 1995, 1998).

9.4.4 � POWER-PRODUCTION EXPERIMENT

With such a feasibility experiment successfully conducted, a further extension into 
a parameter regime of still higher pressure and density would eventually lead to a 
fusion scheme with net power production.

For example, if compression to the case “liquid metal 2” (at a pressure of 112 Mbar, 
still far below an ICF pressure) in Table 9.2 is realized with an increase of the 
impactor mass and energy, we might expect a burst of power production at a rate  
~34.7 GW/g. The actual duration for such a nuclear burning would depend sensi-
tively on the thermal evolution of the hydrogen fuel (Kitamura & Ichimaru, 1996). 
Assuming that the reactions might last for ~1 ms at this rate, we would find a total 
thermal output of ~0.17 MJ, which would correspond to a burning ratio of ~2 × 10−4.
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10
PHASE DIAGRAMS OF 

NUCLEAR MATTER
Ordinary nuclear matter, when heated or compressed sufficiently, is expected to 
turn into a new state—a quark–gluon plasma—in which the fundamental degrees of 
freedom are the quarks that compose neutrons and protons, and, at finite temperature, 
antiquarks and gluons as well. In a sense, the physical circumstances involved are 
analogous to the metal–insulator transition as described in Sec. 6.5. We here present 
our current understanding of the phase transition from ordinary matter to the quark–
gluon plasma. We then describe the physical situations, such as the early universe, the 
core of a neutron star, and ultra-relativistic heavy-ion collisions, where such plasmas 
may be expected.

10.1 � DECONFINEMENT OF QUARKS FROM NUCLEONS
The quark–gluon plasma is a phase of matter whose elementary constituents are the 
quarks, antiquarks, and gluons that make up the strongly interacting particles. It is a 
new phase in the sense that it has not yet been detected in the laboratory.

10.1.1 � RELATIVISTIC HEAVY ION COLLIDER EXPERIMENTS

To probe the densest states of nuclear matter, the nuclear physics community has 
embarked on a large-scale program of studying collisions of ultra-relativistic heavy 
ions (e.g., Stenlund et al., 1994; Baym, 1995; Yagi, Hatsuda, & Miake, 2005). In the pro-
gram, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory 
plans to provide the capacity of colliding nuclei as heavy as Au on Au at 100 GeV 
per nucleon in the center of mass (equivalent to 20 TeV per nucleon in a fixed-target 
experiment).

Statistical Physics of Dense Plasmas
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Phase Diagrams of Nuclear Matter

Recently, the STAR Collaboration (2017) at RHIC reported the first measurement of 
the rotation of the quark–gluon plasma produced in heavy-ion collisions and thereby 
provided crucial information for theoretical models that attempt to account for how 
such plasmas may be formed.

10.1.2 � THE OLDEST PHASE OF MATTER

The quark–gluon plasma is said to be the oldest phase of matter, the form of the mat-
ter that filled up the early universe at temperatures of trillions of degrees, until the 
first few microseconds after the Big Bang.

It is also said that the quark–gluon plasma may be found deep in the cores of neu-
tron stars, where an extremely high density of matter is expected.

10.2 � PHASES OF NUCLEAR MATTER
We find it instructive to draw an analogy between metallization of hydrogen atoms, 
treated in Sec. 6.5, and deconfinement of quarks from nucleons, as we construct the 
phase diagrams for nuclear matter, relative to the phase diagrams of hydrogen 
(Figure 6.1). For example, a proton, a kind of nucleon, is said to assume a confined 
state of three quarks of different colors.

10.2.1 � PHASE DIAGRAMS

Earlier in 1995, G. Baym advanced phase diagrams of nuclear matter, noticing the cor-
respondence between hadrons and insulators on the one hand and between quark–
gluon plasmas and metals on the other. He additionally remarked on the gas–liquid 
phase transitions in hadrons and discontinuous deconfinement transitions in nuclear 
matter (Baym, 1995).

Recently, Yagi, Hatsuda, and Miake (2005) advanced schematic phase diagrams of 
nuclear matter, shown in Figure 10.1, in line with Baym’s predictions.

Here, “Hadron,” “QGP” and “CSC” denote the hadronic phase, the quark–gluon 
plasma, and the color-superconducting phase, respectively; ρnm denotes the baryon 
density of the normal nuclear matter. Possible locations at which we may find the 
various phases of nuclear matter include hot plasmas in the early universe, dense 
plasmas in the interiors of neutron stars, and the hot/dense matter created in heavy 
ion collisions (HICs).

10.2.2 � DECONFINEMENT VERSUS METALLIZATION

In Figure 10.1, we also note the critical point associated with the discontinuous decon-
finement transitions, analogous to the critical point CMI in Figure 6.1 associated with 
discontinuous metal–insulator transitions in hydrogen (Kitamura & Ichimaru, 1998).
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10.3 � STRUCTURE OF A NEUTRON STAR
A neutron star is an astronomical object of about one solar mass compressed to a 
radius of approximately 10 km with an average density well in excess of 0.1 billion 
tons/cm3, comparable to the mass density of atomic nuclei ρnm.

10.3.1 � THREE-PART STRUCTURE

The neutron star, like the planet Jupiter in Figure 1.1, may have a three-part structure, 
consisting of the ultra-dense central core of quark–gluon plasmas, the main body of 
condensed neutron liquids, and the outer-layer of Wigner-crystallized Coulomb sol-
ids consisting mostly in Fe nuclei.

We depicted in Figure 1.3 a schematic structure of a neutron star. According to 
model calculations, it has an outer crust, consisting mostly of iron, with a thickness 
of several hundred meters and a mass density in the range of 104∼107 g/cm3. At these 
densities, iron atoms are completely ionized, so each contributes 26 conduction elec-
trons to the system. At temperatures near 107 K, the thermal de Broglie wavelengths 
of the resultant Fe nuclei are substantially shorter than the average inter-nuclear sep-
arations; the iron nuclei may be regarded as forming classical ionic plasmas.

Over the bulk of the crustal parts, the nuclei are considered to form a Coulomb solid. 
A neutron star may then be looked upon as consisting of an ultra-dense interior of neu-
tron fluids with fractional constituents of protons and electrons, a crust of Coulomb 

FIGURE 10.1  Schematic phase diagram of nuclear matter. “Hadron,” “QGP,” and “CSC” 
denote the hadronic phase, the quark–gluon plasma, and the color-superconducting phase, 
respectively; ρnm denotes the baryon density of the normal nuclear matter. Possible locations 
at which we may find the various phases of nuclear matter include the hot plasma in the early 
universe, dense plasma in the interior of neutron stars, and the hot/dense matter created in 
heavy ion collisions (HICs) (Yagi, Hatsuda, & Miake, 2005).
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solids, and a thin layer of “ocean” fluids. Electron transports and photon opacities in 
the outer crust and in the surface layer play the crucial parts (Gudmundsson, Pethick, 
& Epstein, 1982) in the estimate of the cooling rates for neutron stars (Nomoto & 
Tsuruta, 1981).

10.3.2 � NON-RADIAL OSCILLATIONS

Non-vanishing shear moduli associated with the crustal solids (Fuchs, 1936; Ogata 
& Ichimaru, 1990) lead to a prediction of rich spectra in the oscillations of a neutron 
star. In conjunction with such structures, McDermott et al. (1985, 1988) were the first 
to analyze non-radial oscillations of neutron stars, with the predictions of the bulk 
and interfacial modes, associated with the non-vanishing shear moduli of the crustal 
solid, with characteristic periodicity on the order of milliseconds.

First-principles calculations of shear moduli for Monte-Carlo-simulated Coulomb 
solids, with inclusion of the Coulomb glasses of Sec. 4.6, were presented (Ogata & 
Ichimaru, 1989, 1990); the results have been applied for improved analyses of the non-
radial oscillations (Strohmayer et al., 1991).

10.3.3 � CENTRAL CORE

In the central core of a neutron star with a mass density in excess of 1 billion ton/cm3, 
above the discontinuous deconfinement transitions, a phase with the quark–gluon 
plasmas is expected (Baym, 1995; Yagi, Hatsuda, & Miake, 2005).
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11
PLASMA PHENOMENA 

AROUND NEUTRON STARS 
AND BLACK HOLES

The radio astronomy commenced by Jansky’s discovery of cosmic radio waves in 
1931 has achieved remarkable progress thanks to the subsequent development in 
radio technology. In 1967, Hewish, Bell, and their collaborators in England discovered 
in our Galaxy astronomical objects emitting periodic radio pulses some tens of a 
millisecond in width at a regular interval of approximately one second; the objects 
were called pulsars. In 1968, a pulsar with a pulse width of 2 ms and a period of 33 ms 
was discovered at the center of the Crab Nebula, the supernova remnant of the year 
1054. Figure 11.1 shows the Crab Nebula observed by the Hubble Telescope (NASA); 
indicated by the arrow is the location of the pulsar.

The age of artificial satellites initiated by the launching of Sputnik in 1957 opened 
up our “eyes” to cosmic X-rays, which cannot be detected on the earth because of 
atmospheric absorption. In 1962, a “bright” X-ray star was discovered in the constel-
lation of Scorpius (Sco X-1), emitting X-rays with luminosity greater than a thousand 
times the total luminosity of the Sun. In 1971, X-ray pulsars emitting pulsed X-rays 
at regular intervals were discovered in the constellations of Centaurus and Hercules 
(Cen X-3 and Her X-1). In the same year, an intense X-ray object with a rapid temporal 
variation was discovered in Cygnus (Cyg X-1), which has subsequently been identi-
fied as the first stellar black hole in the Galaxy.

Those conspicuous astrophysical phenomena are produced, in fact, through the 
radiative processes in plasmas around neutron stars or black holes. A neutron star 
and a black hole are those states of stars expected in their final stages of evolution (cf., 
Figure 1.2). In this chapter, we shall elucidate how those stars with all their nuclear 
fuels exhausted can produce such remarkable radiation.

Statistical Physics of Dense Plasmas
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Plasma Phenomena around Neutron Stars and Black 
Holes

 11.1 � PULSARS
As remarked in the opening of this chapter, the discovery of pulsars in 1967 was 
indeed an epoch-making event that brought home sensational developments in 
plasma physics as well as in nuclear physics.

11.1.1 � DISCOVERY

Figure 11.2 shows the record of pulsar discovery reported in Hewish et al. (1968). This is 
the pulsar now known as PSR 1919+21*; it emits radio pulses (80.5 MHz and 81.5 MHz 
in Figure 11.2) with a repetition period of 1.3373 s and an average width of 25 ms. Since 
then until the summer of 1980, some 328 such pulsars were discovered in the Galaxy.

11.1.2 � CHARACTERISTIC FEATURES

Some of the typical characters exhibited in those radio pulsars (e.g., Manchester & 
Taylor, 1977; Michel, 1982) are summarized in the following:

	 1.	The average period (P) and pulse shape of radio pulsars are very stable.
	 2.	The distribution of pulsar periods is peaked somewhere around one second; the 

largest period known is approximately four seconds.

*	 The prefix PSR is abbreviation of “pulsar.” A four-digit number following PSR indicate right ascen-
sion (in 1950.0 coordinates); a sign and two digits are added to designate degrees of declination.

FIGURE 11.1  Crab Nebula observed by Hubble Telescope (NASA). Indicated by the arrow is 
the location of the Crab Pulsar.
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	 3.	The repetition period increases gradually over time. Denoting such a rate of 
increase by �P (= dP/dt),

	 t º P
P2 �

. 	 (11.1)

	 takes on 106–108 years for most of the pulsars. This τ thus gives a rough measure 
on the “age” of pulsars.

	 4.	The radio wave emitted is intense; an equivalent temperature fitted to the 
Rayleigh–Jeans law reaches 1021–1030 K. This simply means that the radio wave is 
non-thermal.

	 5.	The average pulse width is approximately proportional to the period; the pulse 
width ranges 4°–20° when the pulse period is taken to be 360°.

	 6.	With a few exceptions, the pulsar radio waves are weakly polarized (Manchester, 
Taylor, & Huguenin, 1975). When a polarization is observed, a linear polariza-
tion is predominant, and in some cases, circular polarizations are observed.

FIGURE 11.2  Record of pulsar discovery on 11–15 December 1967 (Hewish et al., 1968).
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	 7.	Looking at individual pulses with a resolution of ∼1 ms, one can distinguish 
various subpulses with widths 2°–5° (Taylor, Manchester, & Huguenin, 1975). 
For some pulsars, those subpulses exhibit a systematic drift across the pulse 
window.

	 8.	Those observed pulsars belong to our Galaxy; their distances from the earth are 
on the order of a few thousand light years.

11.1.3 � CRAB AND VELA PULSARS

As for the notorious pulsar found in the Crab Nebula (PSR 0531+21), we add the fol-
lowing: Its period P = 33.098 ms is one of the shortest among the known pulsars; 
�P = ´ -4 22689 10 13.  is the largest. The calculated value of τ is 1200 years, which roughly 

corresponds to its birth in the year 1054.
The Crab Pulsar is young and active, emitting not only strong radio pulses (Staelin 

& Reifenstein, 1968; Comella et al., 1969) but also pulsed visible light (Cocke, Disney, 
& Taylor, 1969) and X-rays (Bradt et al., 1969).

PSR 0835-45 is another fast pulsar which appears associated with a supernova 
remnant in the constellation Vela (Large, Vaughan, & Mills., 1968). Its characteristics 
are: P = 89.206 ms, and �P = ´ -1 25264 10 13. .

In addition to the steady decay, the pulsation period of the Vela pulsar exhibited a 
sudden decrease of two parts per million sometime between February 24 and March 
3, 1969 (Radhakrishnan & Manchester, 1969; Reichley & Downs, 1969).

11.2 � ROTATING MAGNETIC NEUTRON STARS
When the discovery of pulsars created a wake of sensation, one of the first questions 
asked, naturally, was:

11.2.1 � WHAT ARE THE PULSARS?

Candidates for the astronomical objects, which can sustain short-term variations 
ranging from a few milliseconds to a few seconds, are confined to those compressed 
objects, such as a white dwarf and a neutron star, expected in the final stages of stellar 
evolution (cf. Figure 1.2).

As for the characteristic motion, the stellar rotation and vibration, as well as the 
orbital motion of a binary system, were considered; the last one was soon discarded 
because of the lifetime considerations due to the emission of gravitational waves.

A white dwarf is formed in the balance between the gravitational self-contraction 
and the Fermi pressure stemming from degenerate electrons (cf. Sec. 6.1.2). Typically, 
its mass is about the solar mass (MS ≅ 1.99 × 1030 kg) and the radius is approximately 
one percent of the solar radius (RS ≅ 6.69 × 105 km).
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A calculation on the basis of such a model reveals that the period of radial oscil-
lations in its fundamental mode cannot become smaller than 2 s. A consideration on 
the basis of the escape velocity of matter from the surface of a rotating star indicates 
that a theoretical lower limit of the rotational period is approximately 1 s. Those num-
bers are quite inconvenient in explaining the observed features of the pulsars.

It was also noted that none of the observed pulsars were associated with existing 
white dwarfs.

The neutron star is a final state of a stellar object, which may be created in the 
supernova remnant; it is even more compressed than the white dwarf. Typically, one 
assumes a neutron star of a solar mass with a radius of approximately 10 km; the 
density in its central domain reaches 1014–1015 g/cm3. The period for the radial vibra-
tion of such a neutron star is estimated to be 10−3–10−4 s, which appears too small to 
account for the pulsar observation. The lower limit of the rotational period, however, 
turns out 10−2 s, which adequately explains the pulse repetition periods of pulsars, 
including the Crab.

The observed association of the Crab and Vela pulsars with supernova remnants 
has been regarded as a positive evidence for the neutron star model of pulsars. In 
addition to Crab and Vela, the following pulsars are known with their supernova 
association: PSR 1919+21 (Goss & Schwarz, 1971), PSR 1154-62 (Large & Vaughan, 
1972), PSR 0611+22 (Davies, Lyne, & Seiradakis, 1972), PSR 2021+51 (Verschuur, 1973), 
and PSR 1919+14 (Hulse & Taylor, 1974).

That the signals from PSR 0950+08 contain rapid impulses of 175 µs and are fre-
quently accompanied by variations of ∼10 µs (Rickett, Hankins, & Cordes, 1975) is like-
wise a favorite piece of evidence for the neutron star hypothesis. The total extent of the 
radio source would at most be the distance over which radio waves propagate in the 
period of rapid variation. Distances over which the radio waves propagate in 10–175 
µs are 3–50 km. These are about the same order of magnitude as a typical neutron star 
radius of 10 km but are substantially smaller than a radius of the white dwarf.

All the evidence accumulated above appear to point to the neutron stars as the 
likely model for the pulsars.

11.2.2 � PULSAR MAGNETIC FIELD

It is expected that a neutron star is accompanied not only by a rotational motion but 
also by a strong magnetic field. Consider a situation in which a star similar to the 
Sun with an average surface magnetic field of 102 gauss and a rotational velocity of 
10−7 rad/s is compressed by a factor of 10−5 in radius and thereby becomes a neutron 
star. Assuming also that the total magnetic flux and the total angular momentum are 
both conserved in the process of contraction, we estimate that the resulting neutron 
star would have a surface magnetic field of approximately 1012 gauss and a rotational 
angular velocity of 103 rad/s.

This value of rotational velocity, of course, far exceeds the repetition frequency of 
pulsars now observed. The rotational energy may, however, be lost rather quickly in 
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contraction; the neutron star so created may begin rotating with a reduced velocity, 
accounting for the present observation.

11.2.3 � SPINNING DOWN OF PULSARS BY 
MAGNETIC DIPOLE RADIATION

Under the assumption that the pulsars are the rotating magnetized neutron stars (see 
Figure 11.3) spinning down by emitting magnetic dipole radiation (Ostriker & Gunn, 
1969; Pacini, 1967), we may formulate the rate of change in their angular velocity Ω 
(=2π/P) as given by

	
d
dt
Ω Ω= − 2

3 3

6 2 2
3

c
R B

I
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,
α

	 (11.2)

where I (∼1045 g·cm2) is the moment of inertia of the neutron star and α is the angle 
between the magnetic dipole and rotation axes (Chanmugam, 1992).

If, for the sake of simplicity, we assume that α = π/2, the magnetic field of the neu-
tron star may then be inferred to be
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Figure 11.4 shows various pulsars plotted in a B versus P diagram. Based on the dipo-
lar radiation hypothesis, we here find that the magnetic fields have been inferred to 
be 1011 gauss ≲ B ≲ 1013 gauss for most of the pulsars.

FIGURE 11.3  Rotating magnetic neutron star.
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Note, however, that the deduced field strengths would be different if the spin-
down was due to higher multipole radiation (Krolik, 1991). More importantly, the 
pulsar’s electromagnetic fields may act to polarize the surrounding medium so that 
the neutron star is actually situated in a magnetospheric plasma (Goldreich & Julian, 
1969); a simple hypothesis of radiation in vacuum may not be applicable.

In the latter connections, we must particularly point to the strong influence that 
the Crab Pulsar exerts on the Crab Nebula as a whole.

11.2.4 � SPINNING DOWN OF CRAB PULSAR AND 
THE CRAB NEBULA ACTIVITIES

The rotation energy

	 E IR =
1
2

2W 	 (11.4)

FIGURE 11.4  Magnetic fields of pulsars as a function of their periods, assuming that spinning 
down results from emission of magnetic radiation. If pulsars are born with short periods, and 
their magnetic fields are constant, they evolve from left to right and reach the dashed lines at 
the ages (in years) indicated. When pulsars cross the death line, they die and enter the “grave-
yard.” Pulsars in binaries are indicated by a dot with a circle; those in a globular cluster by 
“G” (Chanmugam, 1992).
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associated with the spinning of a neutron star with the moment of inertia  
I (∼1045 g·cm2) and angular velocity Ω decreases at a rate

	
dE
dt

I
d
dt

R = W W
. 	 (11.5)

For the Crab Pulsar, this rate of decrease is computed to be ∼1039 erg/s, based on the 
observational data. This value, in fact, turns out to be sufficient in supplying all the 
luminosity of the Crab Nebula, that is, ∼4 × 1038 erg/s.

This observation solves the outstanding puzzle concerning the activities of the 
Crab Nebula. It is the remnant of the supernova in 1054 and now spreads over a spa-
tial extent of several light years (see Figure 11.1). From the region, a wide spectrum 
of radiation ranging from radio waves to the γ-ray is emitted. The observed radiation 
characteristics clearly indicate that those emissions are non-thermal, produced by the 
synchrotron radiation, that is, by the interaction of relativistic electrons with magnetic 
fields.

The estimated lifetimes of those high-energy electrons are far shorter than the age 
of the Crab Nebula, and so those electrons must be supplied continuously by external 
sources. A pulsar having been discovered in its central part, it would be natural to 
assume that the rotating magnetic neutron star provides the creation and acceleration 
mechanisms necessary for the relativistic electrons.

It may thus give us a sort of elated feeling to imagine that a heavy “toy top” with 
a radius of ∼10 km spinning at a high speed of 30 revolutions per second releases its 
rotational energy gradually and thereby “energizes” the entire nebula spreading over 
an extent of several light years. The X-ray image of the Crab Pulsar in Figure 11.5 may 
graphically substantiate such features.

We may also assume that the strong magnetic field of a neutron star plays the 
central role in converting the rotational energy to the radiation. For example, the rota-
tional energy may in part be converted to magnetic dipole radiation, as we remarked 
in conjunction with Figure 11.4. The frequency of such a magnetic radiation, however, 
is simply P−1; such radiation by itself would not produce the pulses.

11.2.5 � CONSTRUCTING THE RADIO BEAMS

Let us then proceed to consider the pulsar radiation mechanisms by assuming a fun-
damental model of a rotating neutron star with a surface magnetic field on the order 
of 1012 gauss, as in Figure 11.3 (e.g., Manchester & Taylor, 1977; Michel, 1982).

At this stage, we recall the stability of the average pulse shape as remarked in Sec. 
11.1.2 (1). Combining the intensity of the radio wave observed and the estimate of the 
pulsar distances, we can infer the energy density of the radiation field in the vicinity 
of a pulsar. For stability in mechanical terms, this energy density must be substan-
tially smaller than the energy density of the plasmas that produce the radiation. The 
only conceivable source to provide such mechanical stability is the strong magnetic 
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field associated with the neutron star. Accordingly, we may accept a model in which 
the radio waves are emitted near the stellar surfaces.

A simple mechanism to establish radio pulses with a rotating star is to assume 
a searchlight beam of radio wave around the axis of rotation. Under these circum-
stances, we may observe the radio wave only when the beam is directed toward us; 
thus, the opening angle of the searchlight beam is geometrically connected to the 
effective widths of the pulses.

As we observe in Figure 11.3, some of the magnetic lines of force streaming out 
from the surface of the rotation star may return to the stellar surface, while some 
others may stream out into the interstellar space. We note, on the one hand, those 
charged particles with the closed magnetic lines of force cannot be accelerated effec-
tively by an external force; on the other hand, the acceleration is rather efficient in 
the space with open field lines. Consequently, the boundary between the open and 
closed field lines may determine the opening angle of the searchlight, where radio 
emission is predominant.

Let RB be the largest radius where the closed magnetic lines of force can reach (cf. 
Figure 11.3). Assuming a dipolar magnetic field, we may estimate the opening angle 
of the searchlight as

	 qB
B

R
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where R is the radius of the neutron star.
Two theoretical possibilities have been suggested for RB. One is to take

	 R
c
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W

, 	 (11.7)

FIGURE 11.5  X-ray image of the Crab Pulsar by Chandra X-ray Observatory (NASA).
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where the rotational velocity becomes equal to the light velocity. The other is to 
take Rc, where the gravitational force balances with the centrifugal force (Roberts & 
Sturrock, 1973), that is,

	
GM
R

R
c

c2
2= W . 	 (11.8)

Here G = 6.6720 × 10−8 erg·cm·g−2 is Newton’s gravitational constant and M is mass of 
the neutron star.

This radius, being an order of magnitude smaller than RL, gives a slightly larger 
estimate of θB. The value of θB determining the ratio between pulse widths and periods 
in these models appears to give a fairly consistent estimate vis-à-vis the observed data.

11.2.6 � CREATING THE PLASMAS

The remaining issues in conjunction with a model setting are first to apply an accel-
erating field in the space specified previously, then to create plasmas emitting the 
radiation, and finally, to compare the results with observation. These are complex 
issues. At this stage, we do not know how to create such plasmas, not to mention their 
properties.

Sturrock (1971) and later Ruderman and Sutherland (1975) proposed a theoreti-
cal model accounting for a radiation mechanism of pulsars with the inclusion of the 
issues of plasma production. To a degree, it physically resembles the processes in 
ordinary gaseous discharges. One evokes the electron–positron pair production aris-
ing from the interaction between the γ-ray and the magnetic field, in place of the 
electric discharges of atoms and molecules in gases. The threshold energy 2mc2 for 
the pair production thus plays the part of the ionization potential.

To begin, we note that a neutron star may be viewed as a perfect conductor, because 
it contains a substantial amount of conduction electrons and protons (cf. Sec. 1.1.1 and 
Figure 1.3). Generally, in the rotating magnetic neutron star, the stellar matter would 
move relative to the magnetic field, which in turn would exert a force onto the stellar 
matter. In a perfect conductor, the net force acting on a charged particle should van-
ish; a space-charge distribution is thus created inside the star just to cancel the effect 
due to the magnetic force. In other words, a rotating magnetic star polarizes itself 
electromagnetically and thereby produces an internal electric field.

Electric polarization of a star then additionally induces a potential difference in 
the space exterior to the star. The maximum amount of the potential difference cre-
ated between the star and the interstellar space along the magnetic lines of force 
reaches ΩΦ/2πc, where Φ (� πθBR B2 2 4/ ) is the total number of the open magnetic 
lines of force in Figure 11.3. The bulk of such a potential difference is moreover con-
centrated near the stellar surface up to the altitude on the order of the stellar radius. 
This potential difference would naturally increase with the rotational velocity Ω of 
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the star; for an ordinary pulsar with P ≃ 1 s, it takes on a value of around 1012 V. This 
is a potential capable of accelerating an electron up to a super-relativistic energy of 
γmc2 with γ ≈ 2 × 107.

Suppose that an electron (or a positron) is placed above the neutron star near a 
magnetic pole. Since the electric field is extremely strong, such an electron would be 
accelerated immediately to a super-relativistic (γ » 1 for a particle with energy γ mc2) 
energy. The relativistic electrons traveling along magnetic lines of force with a finite 
radius of curvature emit γ-ray photons in its direction of motion with a characteristic 
energy determined by the radius of curvature and the energy value; it is the synchro-
tron radiation.

When the energy of such a photon exceeds 2mc2, a possibility of creating an elec-
tron–positron pair arises through interaction with adjacent magnetic lines of force. 
The mean free path of a photon for the pair production depends on the strength of 
the magnetic field, the curvature, and the photon energy; it tends to decrease as each 
of those quantities increases.

If the effective length of acceleration is comparable to the mean free path, then a 
pair production will take place. Electron and positron so produced are then acceler-
ated separately by the electric field and thereby emit photons. Those photons then 
produce electron–positron pairs, which are then accelerated and emit photons. An 
avalanche of pair production thus takes place, and electron–positron plasmas may be 
created, analogous to “spark” discharges in gaseous substances.

11.2.7 � A PULSAR EMISSION MECHANISM

If a spark discharge of this nature is maintained near the magnetic pole, electron–
positron plasmas may be produced. Since an electron and a positron carry the electric 
charges of opposite sign, they produce a counter-streaming flow of charged particles 
in the electric field. The two-stream instability of plasma oscillation (e.g., Buneman, 
1959) may then take place; spatial bunching of charged particles may thus develop 
(Ichimaru, 1970). In Sec. 3.5, we treated excitations of the ion-acoustic wave due to 
drift motion of the electrons relative to the ions; the resultant enhancement of den-
sity fluctuations, reminiscent of the critical opalescence in the vicinity of a liquid-gas 
phase transition, was considered. The bunching of charged particles under present 
circumstances may resemble these phenomena.

The bunches of charged particles so produced travel along magnetic lines of force 
and thereby emit electromagnetic waves by the curvature acceleration. If the sizes 
of bunches are smaller than those wavelengths in the radio domain, the N charged 
particles in a bunch may emit the waves with coherent phases. Since the strength of 
electromagnetic radiation is proportional to the square of the electric charge, it may 
become N times greater in a coherent situation than in an incoherent one. Since N can 
take on an extremely large number, the high effective temperatures noted in the item 
Sec. 11.1.2 (4) may be accounted for in terms of such bunching.
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As the rotation is slowed down and the effective strength of acceleration decreases, 
electrons and positrons cannot be accelerated effectively; the high-energy photons for 
the pair productions cannot be created. In these circumstances, a neutron star even 
with a substantial magnetic field cannot be observed as a pulsar, because radiating 
plasmas cannot be maintained. This may be a reason for not finding a pulsar with a 
long period, as noted in the item Sec. 11.1.2 (2); Figure 11.4, in fact, shows the scarcity 
of pulsars with P > 4 s.

The foregoing is a scenario explaining the mechanism of a pulsar. Some other pos-
sibilities and alternatives have also been considered and examined (e.g., Manchester & 
Taylor, 1977; Michel, 1982).

11.3 � X-RAY PULSARS
Except for a few examples (e.g., PSR 0531+21), all the pulsars treated in the previous 
sections are radio pulsars. In 1971, X-ray pulsars were discovered in the constellations 
of Centaurus and Hercules, and they were named Cen X-3 and Her X-1 (Giacconi 
et al., 1971; Tananbaum et al., 1972a). Figure 11.6 shows the X-ray signal from Her X-1. 
The pulse repetition period was 4.84 s for Cen X-3 and 1.24 s for Her X-1.

11.3.1 � CLOSE BINARY SYSTEMS

It was also confirmed that those X-ray pulsars are members of binary stars. Members 
of the binaries perform Keplerian orbital motion with respect to their centers of 

FIGURE 11.6  The counts accumulated in 0.096-second bins from Hercules X-1 during the cen-
tral 30 seconds of a 100-second pass on 6 November 1971. The heavier curve is a minimum χ2 
fit to the pulsations of a sine function, its first and second harmonics plus a constant, modu-
lated by the triangular response of the collimator (Tananbaum et al., 1972a).
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gravity. Periods of such an orbital motion observed were 2.1 days with Cen X-3 and 
1.7 days with Her X-1. Note that those are far shorter than the orbital period of the 
Earth (approximately 365 days), for example.

Orbital motion was confirmed by the fact that the pulse arrival times were not 
evenly distributed (see Figure 11.7). This is the Doppler effect treated in Sec. 3.1.2. 
While an X-ray pulsar in a binary was approaching us, interpulse separations shorter 
than the average were observed; while receding, the separations became wider. The 
orbital data can thus be decoded from the arrival times. The deviation shown in 
Figure 11.7 follows a sinusoidal curve, implying the pulsar performing almost a cir-
cular orbital motion with negligible eccentricity.

Another remarkable feature in Figure 11.7 is the fact that the X-ray pulses are unob-
servable at some phases of the orbital motion. This means an “eclipse” when a small 
X-ray star travels behind a giant star with a radius several times that of the Sun. Such 
an eclipse thus provides another piece of evidence that the X-ray pulsar is a member 
of a binary system.

Analyzing the pulse arrival times in terms of the Kepler’s third law reveals that 
the distances between the binaries take on small values near 107 km, which are only 
an order of magnitude larger than the solar radius. Such is therefore called a close 
binary system (CBS).

11.3.2 � ACCRETION

Let us now take a system of coordinates fixed onto such a binary system and con-
sider a force acting on a test mass placed on this system. First, it is attracted to each 
star by the gravitational force; second, it is repelled from the center of mass for the 
binary by the centrifugal force. When the test mass is located far from the binary, 
the centrifugal force wins; it is ejected. When the test mass is placed near the binary, 
the gravitational attraction wins.

We may thus define effective potential and equipotential surfaces in the combined 
field of the centrifugal force and the gravity. The Roche limit may thus be defined in 

FIGURE 11.7  The difference ∆t between the time of occurrence of a pulse and the time pre-
dicted for a constant period is plotted as a function of time (Tananbaum et al., 1972a).
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Figure 11.8 as the smallest of those equipotential surfaces that enclose both stars. The 
effective potential takes on a maximal value at L along the line ab and a minimal 
value at L along the line cd; the point L thus makes a saddle point.

If the right-hand star in Figure 11.8 has a size comparable to or greater than the 
Roche limit, then the atmospheric matter, or plasmas, may flow over the Roche limit 
through the saddle point L, falling into the gravitational domain of the left-hand star. 
If the left-hand star is a dense degenerate star such as a neutron star (or a black hole), 
a sizable amount of gravitational energy is liberated as the overflowing matter falls 
onto the stellar surface; a copious emission of X-ray is thus expected.

The process described above is called accretion. Let us calculate the amount of 
gravitational energy liberated through such an accretion. We denote the radius of the 
accreting star by R, the mass by M, the rate of mass accretion per unit time by �M . 
Since the accreting matter eventually sticks onto the star, it means an increase in the 
stellar mass. The rate of energy liberated then is
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Although we cannot predetermine the mass accretion rate, we know the solar wind 
by which the Sun ejects a substantial amount of its mass. Such a stellar wind being a 
common affair, we may reasonably assume a mass transfer at a rate of (10−9–10−8) MS/yr.  
Taking M = MS and R = 10 km for a neutron star, we may assess the rate of releasing 
the gravitational energy at 1037–1038 erg/s from (11.9). The total luminosity of the Sun 
being approximately 4 × 1033 erg/s, the computation above points to the possibility 
of devising an X-ray star “brighter than a thousand Suns” through accretion onto a 
neutron star in a CBS.

FIGURE 11.8  Roche limit and accretion in the close binary system.
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11.3.3 � CYCLOTRON RESONANCE SCATTERING FEATURE

The neutron star onto which plasmas accrete may carry a strong magnetic field, as 
with the case of the radio pulsars. In the present case, detection of the cyclotron reso-
nance scattering feature (CRSF), that is, a characteristic feature in the observed X-ray 
spectrum due to electron-cyclotron resonance scattering offers a reliable technique 
of estimating the field strength in the accretion column above the magnetic pole. In 
terms of the observed cyclotron resonance energy Ec, the field strength is given by

	 B Ec( ) . ( ).10 0 86211gauss keV= 	 (11.10)

Figure 11.9 exhibits the best example of CRSF as observed by the Ginga satellite, a 
Japanese X-ray astronomy satellite launched in 1987 (Makishima, 1995). The feature 
observed at 28.5 keV implies the field strength of 2.5 × 1012 gauss for the transient 
X-ray pulsar X0331+53. We might additionally remark that this technique has been 
applied to Her X-1, in which a CRSF was seen either at ∼35 keV in absorption, or at 
∼60 keV in emission (Trümper et al., 1978; Voges et al., 1982).

11.3.4 � ACCRETION MODEL OF X-RAY PULSARS

The accretion of plasmas in a CBS is one of the fundamental models accounting for 
X-ray pulsars such as Cen X-3 and Her X-1 (Pringle & Rees, 1972; Davidson & Ostriker, 
1973; Lamb, Pethick, & Pines, 1973; Shapiro & Teukolsky, 1983). Plasmas falling toward 
the neutron star may form an accretion disk, to be accounted for in Sec. 11.4, around 
a magnetized neutron star. Plasmas forming an accretion column falls onto the mag-
netic poles. Through accretion, the plasmas are strongly heated in the gravitational 
field and thereby emit X-ray from the pole spots. Emitted X-ray is modulated by the 
stellar rotation; periodic pulse signals, as shown in Figure 11.6, are thus observed.

FIGURE 11.9  The prominent CRSF observed at 28.5 keV from the transient X-ray pulsar 
X0331+53 with Ginga (Makishima et al., 1990). (a) The observed raw pulse-height spectrum, 
fitted with an empirical model for cyclotron resonance. (b) The spectrum normalized to that 
of the Crab Nebula.
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From the point of view of plasma physics, the setting around an X-ray pulsar dif-
fers significantly from that nearby a radio pulsar. In the case of the radio pulsar, we 
had to solve the issue of producing plasmas at the onset. In the accretion model of 
an X-ray pulsar, on the other hand, the origin and the fundamental properties of 
plasmas are more or less given. The mass accretion rate can be assessed from the 
observed X-ray luminosity according to (11.10); the plasma density may be estimated 
therefrom. The plasma temperature can also be inferred from the energy spectrum of 
the observed X-ray. We thus have a fairly dependable estimate on two of the funda-
mental quantities—density and temperature—describing the plasma.

On the basis of those estimates, one may proceed with analyzing the hydrody-
namic behavior of the accreting plasma, interaction with the stellar magnetic field as 
well as heating and X-ray emission in the vicinity of the magnetic poles.

11.4 � BLACK HOLE MODEL OF CYGNUS X-1
In 1916, the year after Albert Einstein laid down the final formulation of the field equa-
tions of general relativity, Schwarzschild published a solution for the field equations 
(Schwarzschild, 1916) that was later understood to describe a black hole (Finkelstein, 
1958; Kruskal, 1960). In 1971, another X-ray star, Cyg X-1, attracted the attention of 
many investigators (Oda et al., 1971; Rappaport, Doxsey, & Zauman, 1971; Schreier 
et al., 1971), which has since been accepted as a first stellar black hole observed in the 
Galaxy.

Figure 11.10 particularly exhibits the X-ray signal from Cyg X-1 with violent short-
term variability. It does not, however, contain well-defined periodic components as 
in the case of Cen X-3 and Her X-1; the latter did contain periodic components as 
well as rapid variability. The X-ray intensity of Cyg X-1 varied with a time constant 
of less than a second. Detailed measurements further revealed X-ray bursts of a few 
hundred microseconds.

It has also been confirmed that Cyg X-1 is a member of a CBS (cf. Sec. 11.3.1) with an 
orbital period of 5.6 days. The companion of Cyg X-1 is an optically identified, ordi-
nary star, HDE226868, with absorption lines showing Doppler effects due to orbital 
motion. The emission lines observed from the matter accreting onto Cyg X-1 likewise 
exhibited the Doppler effects, which varied in opposite phases.

11.4.1 � ENERGY SPECTRA AND VARIABILITY OF X-RAY EMISSION

Figure 11.11 shows salient features observed in the energy spectrum of X-rays 
(Tananbaum et al., 1972b). The abscissa and ordinate represent the X-ray energy and 
the count numbers of X-ray photons (per unit area and per unit time), both plotted in 
logarithmic scales. Until early April of 1971, the Cyg X-1 spectrum was that shown by 
the kink line in Figure 11.11. Since the energy emission rate is the product of photon 
energy and count number, the data imply a two-peak structure in the vicinity of a 
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few keV as well as near a few tens of a keV in its spectral distribution. For brevity, we 
shall call this highly luminous double peak state the “high-mode.”

Around early April of 1971, however, the two-peak structure changed into a 
single-peaked structure represented by the straight line in Figure 11.11 in a period 
of approximately one day; the peak in the vicinity of a few keV then disappeared 
(Tananbaum et al. 1972b). This mode of spectrum remained until April 1975, when 
it returned gradually to the two-peak structure over several days in late April (Holt 
et al., 1975). In early May, Cyg X-1 again assumed a single peak mode in a transition 
time of approximately one day (Sanford et al., 1975). Since then, several transitions 
between those two modes have been reported. For brevity, we shall call this lowly 
luminous single peak state the “low-mode.”

To summarize the observed features of Cyg X-1, we note an intense X-ray emission 
(≳1037 erg/s) with rapid time variability (Figure 11.10), the existence of two “modes” in 
the energy spectrum (Figure 11.11), and transitions between those two modes.

11.4.2 � MASS ESTIMATE

It was postulated that Cyg X-1 was a black hole in a CBS. For the energy source of the 
X-ray emission, an accretion process analogous to that described in Figure 11.8 has 
been considered.

A black hole is a state of a star compressed further beyond the state of a neutron 
star within a characteristic radius, called the Schwarzschild radius,

FIGURE 11.10  The entire exposure to Cygnus X-1 as a function of time after launch on 4 
October 1973. The count rates are binned every 20.48 ms (Rothschild et al., 1974).
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where G is Newton’s gravitational constant and M is the stellar mass (e.g., 
Weinberg, 1972; Shapiro & Teukolsky, 1983). The associated gravitational field 
is so strong that even a photon is trapped and cannot escape from within this 
radius. If we take M to be the solar mass MS, then RB takes on 3 km, about one-
third of a neutron star radius.

One of the principal reasons for the black hole postulation derives from the mass 
estimate for Cyg X-1. First of all, we know the parameters for the orbital from combi-
nation of observed Doppler shifts in the absorption lines and Kepler’s laws. From the 
spectral type of HDE226868, one derives a relation between its radius and mass. Since 
accreting plasmas have been observed, the companion star may be viewed as filling 
its Roche limit. The combination of these considerations enables one to determine a 
possible range of the mass M of Cyg X-1 as 9MS ≤ M ≤ 18MS (Bolton, 1975).

FIGURE 11.11  The average spectra for Cygnus X-1 from before and after the March and April 
1971 transition. The spectra are plotted in photons (cm2·s·keV)−1 versus energy; various power 
law fits are labeled with the energy index and normalization coefficient (Tananbaum et al., 
1972b).
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Since Cyg X-1 emits X-rays with a rapid short-term variability (see Figure 11.10), 
it may naturally be assumed to be a compact star. For stability as a stellar body, the 
white dwarf or the neutron star has its own upper limit in the mass for existence.

For the white dwarf, it is the Chandrasekhar mass limit, which takes on 1.44MS 
(Chandrasekhar, 1935, 1984), as it consists of the ordinary matter described in the 
phase diagrams such as Figure 6.1. As for the upper limit for the mass of a neutron 
star, which consists of the nuclear matter in the phase diagrams such as Figure 10.1, 
it appears that the upper limit falls around 3MS. At any rate, for a compact star with 
a mass greater than 9MS neither a white dwarf nor a neutron star can exist stably; the 
only conceivable object remaining is a black hole.

11.4.3 � PLASMA ACCRETION TO A BLACK HOLE

Let us then set up a scenario as to how the accreting plasmas behave and emit X-ray 
in a close binary system containing a black hole (Thorne & Price, 1975; Eardley, 
Lightman, & Shapiro, 1975; Shapiro, Lightman, & Eardley, 1976). The numbers cited 
below are the model parameters adopted for Cyg X-1 (Ichimaru, 1977).

Let r be the distance from the accreting black hole. General relativistic effects 
become important for r ≲ 107 cm. The Roche limit is located around r ≃ 1012 cm. Stellar 
matter (plasma) overflows the saddle point L in Figure 11.8 and falls into the gravita-
tional domain of the black hole. The accreting plasmas carry angular momenta due 
to the orbital motion of the binary system; they tend to form a disk in the plane per-
pendicular to the axis of rotation as in Figure 11.12. This is the accretion disk (Pringle & 
Rees, 1972; Shakura & Sunyaev, 1973; Novikov & Thorne, 1973).

The thickness 2h of an accretion disk can be estimated from the condition for equi-
librium between the expanding force ∼P/h due to the pressure P and the contracting 
force ∼GMρmh/r3 due to the gravitational attraction of the black hole; the balance gives
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is the Keplerian rotational velocity of the disk. Such an accretion disk may be formed 
at distances, r ≲ 3 × 1011 cm.

The angular momentum per unit mass, rvK, is proportional to r1/2. For the plasma 
to be able to fall toward the black hole, an excess amount of the angular momentum 
should be released outward. Viscosity in the plasma participates in the process of 
such transfer of angular momentum; viscosity also implies internal friction and thus 
acts to heat the plasma (Eardley & Lightman, 1975; Ichimaru, 1976).
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The Keplerian velocity, at which the centrifugal force balances with the gravita-
tional attraction, represents a huge amount of kinetic energy for plasmas accreting in 
the vicinity of a neutron star or a black hole. If we take a proton at r ≃ 10 km, a neutron 
star radius, and M = MS, then we find

	
1
2

1 1 102 4m vp K � �. ´ - erg 69 MeV. 	 (11.14)

So, copious X-ray emission as estimated in (11.9) is expected from plasmas accreting 
onto the surface of a neutron star.

11.4.4 � A BLACK HOLE MODEL OF CYG X-1 OBSERVATION

Analyses of angular momentum transfer, viscous heating, and resulting elementary 
processes in accreting plasmas may put forward the possibility that two distinct 
modes exist in the accretion disk, as illustrated in Figure 11.12 (Ichimaru, 1977). The 
distinction between those two modes depends on the rate of accretion at r ≃ 3 × 1011 
cm where the disk is formed.

At this stage, it is useful to analyze the states of disk plasmas in terms of opacities 
and emissivity of photon. When the plasma is dense so that the mean free path of 
a photon is much shorter than a linear dimension of the plasma, the system is said 
to be optically thick; the plasma radiates quite efficiently, almost like a black body. 
When the plasma is dilute so that the mean free path of a photon is much longer 
than the system size, it is said to be optically thin; the plasma radiates inefficiently by 
bremsstrahlung.

When relatively high-density plasmas ( �M ≳ 3 × 10−8 MS/yr) are supplied at r ≃ 
3 × 1011 cm where a disk may be formed, a low-temperature disk starts to form as 

FIGURE 11.12  Schematic cross-sectional view of accretion disks around a black hole, showing 
a possible bimodal behavior.
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photons may be emitted quite efficiently owing to a high opacity of the plasma; heat 
generated by viscosity is efficiently carried away by radiation. As P/ρm is proportional 
to the temperature, h/r determined from (11.12) takes on a small value; a geometri-
cally thin disk is thus formed.

As the plasma disk gradually falls toward the black hole, an increased amount of 
the gravitational energy is liberated; the temperature rises. The low-energy peak (∼ a 
few keV) in the kinked spectrum of Figure 11.11 stems from thermal radiation in this 
vicinity (r ≳ 2 × 108 cm).

As the plasma falls further toward the black hole, such a geometrically thin disk 
becomes thermally unstable in the vicinity of r ≃ 2 × 108 cm. For, if the disk is heated 
and enlarged, the efficiency of thermal radiation decreases; the thermal energy due to 
viscous heating cannot be effectively dissipated; the plasma temperature goes further 
up; and a thermal instability develops therefrom. As a consequence, the disk plasma 
is abruptly transformed into a high-temperature, geometrically expanded state; its 
electron temperature may reach ∼ 109 K.

In this domain, photons scattered by relativistic electrons receive substantial 
enhancement in energies (i.e., frequencies) due to the inverse Compton processes. High-
energy X-rays with a peak around a few tens of a keV are emitted. The spectrum of 
radiation represented by the kink line in Figure 11.11 may be accounted for in terms 
of the evolution of accretion disk as described previously. A double peak structure 
thus appears, corresponding to the “high-mode.”

When relatively low-density plasma ( �M ≲ 3 × 10−8 MS/yr) is supplied in the vicin-
ity of r ≃ 3 × 1011 cm, on the contrary, the accretion disk follows an evolution path 
qualitatively different from that described previously. The rate of bremsstrahlung 
depends on the frequency of inter-particle collisions, which in turn is proportional 
to the square of density. Low-density plasmas with scarce inter-particle collisions are 
inefficient for radiative processes; viscous dissipation goes directly into heating of the 
plasma. The accreting plasma begins with a high-temperature expanded state.

Although the plasma temperature is high, the X-ray emission is weak in the begin-
ning because of lowness in accretion rate and plasma density. Such an accretion disk, 
however, joins into the high-temperature expanded plasma in the previous evolu-
tional scenario in the vicinity (107 cm ≲ r ≲ 2 × 108 cm) of the black hole; it thus pro-
duces an X-ray spectrum with a single peak around a few tens of a keV. We thus 
interpret the “low-mode” represented by the straight line in Figure 11.11 as originat-
ing from such an accretion process.

The high-temperature plasma in the vicinity of the black hole (r ≲ 107 cm) moves 
so fast that the plasma may well be in a magnetohydrodynamically turbulent state. 
Consequently, the observed millisecond bursts may be accounted for in terms of vio-
lent motion associated with turbulence; the rapid X-ray variability characterizing Cyg 
X-1 may thus reflect the special features in the accreting plasmas onto the black hole.

As explained previously, a black hole model has given a consistent explanation for 
the bimodal characteristics of the Cyg X-1 spectrum. Combining these facts with the 
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mass estimate of Cyg X-1, we may interpret it as highly probable that Cyg X-1 is, in 
fact, a black hole.

11.5 � STELLAR-MASS BLACK HOLES AND 
SUPERMASSIVE BLACK HOLES

Cyg X-1, treated in the preceding section, is an accreting black hole binary with an 
estimated mass ranging 9MS ≤ M ≤ 18MS. Such a system with a stellar-mass black hole 
is now called a microquasar.

In the Universe, there have also been found supermassive black holes with mass 
ranging 106MS ≤ M ≤ 109MS near the centers of galaxies as active galactic nuclei (e.g., 
Rees, 1988).

11.5.1 � MICROQUASARS

Black hole binaries, as we observed with Cyg X-1, have fascinated astronomers, 
because they go through a cycle of many different activity states.

For example, they can be in a state of high accretion and high luminosity, in which 
they strongly emit both “soft” (low energy) and “hard” (high energy) X-rays, namely, 
the bright/soft state; this state explicitly corresponds to the “high-mode” with Cyg 
X-1. Another state is one of low accretion and low luminosity, in which the hard X-ray 
emission exceeds that of soft X-rays, namely, the faint/hard state; this state corre-
sponds to the “low-mode” with Cyg X-1.

Figure 11.13 shows schematic illustrations depicting the bright/soft state and 
the faint/hard state of accretion. As far as physical processes in the accretion disks 
are concerned, these respectively correspond to the “high-mode” and “low-mode” 
described in Figures 11.11 and 11.12.

GRS 1915+105 is a 14MS black hole accreting matter from a 0.8MS K3IV star in a 
wide 33.5-day orbit (Greiner, Cuby, & McCaughrean, 2001). As the first known source 

FIGURE 11.13  Illustrative drawings of accretion disks around a black hole, showing possi-
ble (a) faint/hard state and (b) bright/soft state. In (a), a narrow relativistic jet of plasma is 
depicted for radio emission (Proga, 2009).

ASUS
Typewriter
For More eBooks Or Request, Support hill0 & Purchase a Premium Here in My Blog Thanks & Enjoy!

https://avxhm.se/blogs/hill0



Chapter 11 – ﻿Plasma Phenomena around Neutron Stars and Black Holes         151

of superluminal jets in the Galaxy (Mirabel & Rodriguez, 1994), with a light curve 
exhibiting at least 14 distinct classes of high-amplitude variability due to rapid disk-
jet interactions (Eikenberry et al., 1998; Mirabel et al., 1998; Klein-Wolt et al., 2002; 
Hannikainen et al., 2005), this microquasar provides a fascinating example of cou-
pling between jets and accretion disks around black holes.

To study this relationship, Neilsen and Lee (2009) analyzed the archival High 
Energy Transmission Grating Spectrometer (HETGS) (Canizares et al., 2005) observa-
tion of GRS 1915+105 from the Chandra X-ray Observatory. Between 24 April 2000 and 
14 August 2007, the HETGS observed this microquasar 11 times with high spectral 
resolution, probing 5 of 14 variability classes of this enigmatic X-ray source. Figure 
11.14 shows the data, including six observations of the faint, hard, jet-producing state 
(Dhawan, Mirabel, & Rodriguez, 2000) (observations H1–H6) and five observations of 
various bright, softer states (observations S1–S5).

11.5.2 � SUPERMASSIVE BLACK HOLE IN THE GALAXY

Around the center of our Milky Way Galaxy, a supermassive black hole called 
Sagittarius A* (Sgr A*) with a mass ∼106MS exists, which appears to be accompanied 
by swirling-around gas clouds.

In Sec. 11.2.4, we took up the spinning down of the Crab Pulsar and its relation 
with the Crab Nebula activities. The Crab Pulsar is a strongly magnetized rotating 

FIGURE 11.14  The X-ray luminosity and hard flux fraction (HF) for the 11 archival HETGS 
observations of GRS 1915+105. L38 is the X-ray luminosity in units of 1038 reg/s. HF is defined as 
the ratio of the unabsorbed continuum flux from 0.7−1.4 Å (8.6−18 keV) to 0.7−4.1 Å (3−18 keV). 
The 11 observations are classified as hard or soft based on previous X-ray studies (Belloni 
et al., 2000); as expected, the hard states have a higher HF (Neilsen and Lee, 2009).
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neutron star called a magnetar, which induces various kinds of plasma activities in the 
Crab Nebula.

Figure 11.15 is the image of gas clouds swirling around the black hole at the Milky 
Way’s center as seen in radio emission by the Very Large Array (VLA) of radio tele-
scopes near Socorro in New Mexico. As it was assumed, the flare was coming from 
the activities of a magnetar in the gas clouds, and then, it may provide a useful tool to 
monitor the gas dynamics near the supermassive black hole (Reich, 2013).

11.5.3 � BURST OF γ-RAY FROM A SUPERMASSIVE BLACK HOLE 
BREAKING APART AND SWALLOWING A NEARBY STAR

On 28 March 2011, the Swift team of astronomers was put on alert: a new γ-ray source 
had appeared in the northern sky. This was not big news for Swift, a satellite designed 
to look for γ-ray bursts (GRBs), which are a class of transient sources caused by the 
violent death of fast-spinning massive stars. However, continued observations of the 
event revealed that something entirely new had been detected (Burrows et al., 2011).

Whereas GRBs have a short-lived bright phase of γ-ray and hard X-ray emission 
lasting some ten seconds followed by a long (>1 month), smooth decay, the new source 
maintained a very high luminosity (∼1027 kW) and a strong variability for more than 
a month. The peak value of the observed X-ray (1–10 keV) luminosity, in fact, reached 
∼1048 erg/s, some 3 × 1014 times the solar luminosity. The total amount of X-ray energy 
emitted from this source in the period of more than a month was ∼2 × 1053 erg; it will 
take more than a trillion years for the Sun to emit this amount of energy at the cur-
rent luminosity. In addition, it is noteworthy that a wide range of spectrum in the 
electromagnetic radiation has been observed not only in γ-ray and X-ray but in opti-
cal (a few eV) and radio (∼0.1 mm–10 m) ranges.

FIGURE 11.15  Gas clouds swirling around the black hole at the Milky Way’s center as seen in 
radio emission (Reich, 2013).
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In addition, follow-up observations in the radio waveband showed that the new 
source was expanding with a velocity close to that of light (Zauderer et al., 2011). 
Finally, optical observation placed the transient at the center of a distant (∼6 billion 
light years) galaxy (Levan et al., 2011).

The new source, called Swift J164449.3+573451, is now considered to be the electro-
magnetic signature of the tidal disruption of a star by the massive black hole sitting at 
the center of its host galaxy; it is a process that has been theoretically predicted earlier 
(Rees, 1988; Evans & Kochanek, 1989). We now analyze such a process in some detail.

Let us consider a situation in which a stellar object (called a star) with mass Ms 
and radius Rs is located at a distant R (>RB: Schwarzschild radius) from a black hole 
with mass MB. The star is a sphere consisting mostly of hydrogen plasma, bound by 
gravitational attraction, as with the Sun.

Now, the strength of the gravity is proportional to the mass and inversely pro-
portional to the square of the distance. The side of the star facing the black hole is 
attracted to the black hole with the force ∼MB/(R−Rs)2; the other side is attracted to 
the black hole with the force ∼MB/(R + Rs)2. If the balance, which is the tidal force, suf-
ficiently exceeds the gravitational binding force, ∼Ms/Rs

2, of the star, then the star is 
disrupted in plasma clouds. The resultant conditions are
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Hence, when MB ≃ 106MS and Ms ≃ MS, we numerically find

	 3 10 7 106 7´ < < ´km km.R 	

This is the condition for a star being disrupted, ground out, and turned into a huge 
chunk of plasmas.

The plasmas so created fall further into the gravitational region of the black hole 
and thereby form accretion disks in the way described in Sec. 11.4.3 and Sec. 11.5.1. 
They then plunge into super-strong gravitational fields near RB (Schwarzschild 
radius), are heated to ultra-high temperatures, and thereby emit copious high-energy 
radiation such as γ-ray and X-ray. Furthermore, the accretion disks themselves may 
form large antennas for the emission of radio waves.

It would indeed be a phenomenal incident to conceive a huge black hole gulping 
star-sized plasmas, which abundantly emit the entire spectrum of electromagnetic 
radiation.
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12
DAWN OF GRAVITATIONAL-

WAVE ASTRONOMY
The 2017 Nobel Prize in Physics was awarded for the construction of, and the first 
direct detection of the gravitational waves by, the Laser Interferometer Gravitational-
Wave Observatory (LIGO) operated jointly by the California Institute of Technology 
(Caltech) and the Massachusetts Institute of Technology (MIT) (Abbott et al., 2016a); 
Kip Thorne and Barry Barish of Caltech and Rainer Weiss of MIT received the Prize.

In 1916, Einstein predicted the existence of gravitational waves through the linear-
ized weak-field solutions to the field equations of general relativity. The transverse 
waves of spatial variation in the gravitational field, generated by time variations of 
the mass quadrupole moment of the source, were predicted to travel at the speed of 
light (Einstein, 1916, 1918).

Gravitational-wave astronomy exploits multiple, widely separated detectors to 
distinguish gravitational waves from local instrumental and environmental noise, 
to provide source sky localization, and to measure wave polarization. The LIGO 
sites each operate a single Advanced LIGO detector (Aasi et al., 2015), a modified 
Michelson interferometer that measures gravitational-wave strain as a difference in 
length of its orthogonal arms. Each arm is formed by two mirrors, acting as test 
masses, separated by Lx = Ly = L = 4 km. A passing gravitational wave effectively alters 
the arm lengths such that the measured difference is ΔL(t) = δLx −δLy = h(t)L, where h(t) 
is the gravitational-wave strain amplitude projected onto the detector.

Theoretician Thorne and experimentalist Weiss originally conceived of the 
research project some 40 years ago; Barish then led this gigantic endeavor to success.

The achievements undoubtedly point to the dawn of gravitational-wave astron-
omy. The issues evidently involve the neutron stars and the black holes, which we 
studied closely in the preceding chapter. We begin this chapter with a discussion 
on the binary pulsars that played a cardinal role in the detection of the gravitational 
waves.

Statistical Physics of Dense Plasmas
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Dawn of Gravitational-Wave Astronomy

12.1 � HULSE–TAYLOR BINARY PULSARS
From the beginning, it was recognized that gravitational-wave amplitudes would be 
remarkably small, because gravity is a weak force.

We here note, however, that neutron stars and black holes are unique astronomical 
objects that may exert exceedingly intense gravitational forces around themselves. 
The surface gravity of a neutron star with a solar mass and a radius of 10 km, for 
instance, is 1.4 × 1011 times as intense as the surface gravity on the earth. If such a 
neutron star performs an orbital motion, then the associated surface gravity may 
generate a significant amount of gravitational radiation, which will, in turn, affect the 
orbital behavior itself.

The discovery of the binary pulsar system PSR1913+16 at the Arecibo Observatory 
in Puerto Rico (Hulse & Taylor, 1975) and subsequent observations of pulse arrival 
times from this system between September 1974 and March 1981 (Taylor & Weisberg, 
1982) were sufficient to yield a solution for the component masses and the absolute 
size of the orbit. The energy loss was exposed in the reduction of the orbital param-
eters, clearly demonstrating the existence of the gravitational waves.

The detailed features of a binary system may be decoded from observation of the 
pulse arrival times and the Doppler effect (cf. Sec. 11.3.1). The total mass is almost 
equally distributed between the pulsar (p) and its unseen companion (c), with 
Mp = 1.42 ± 0.06 MS and Mc = 1.41 ± 0.06 MS. They perform orbital motion for a period 
of 7.75 hours along an elliptic trajectory with the mutual distance varying from 4.8 
RS to 1.1 RS. On the basis of those data, we may estimate the rate at which the orbital 
period should decay as energy is lost from the system via gravitational radiation.

According to the general relativistic quadrupole formula, one should expect for 
the PSR1913+16 system an orbital period derivative �Pb = - ± ´ -( ). .2 403 0 005 10 12 . This 
means the orbital period decreases by 6.7 × 10−8 s in a period; revolution shrinks 
by 3.5 m in a year. Observations by Taylor and Weisberg yield the measured value 
�Pb = - ± ´ -( ). .2 30 0 22 10 12 . The excellent agreement provides compelling evidence for 

the existence of gravitational radiation. Figure 12.1 summarizes comparison between 
observations and general relativistic calculations.

This discovery, along with emerging astrophysical understanding (Press & 
Thorne, 1972), led to the recognition that direct observations of the amplitude and 
phase of gravitational waves would enable studies of additional relativistic sys-
tems and provide new tests of general relativity, especially in the dynamic strong-
field regime.

12.2 � GW150915: THE FIRST SIGNALS FOR LIGO
On September 14, 2015 at 09:50:45 UTC, the two modified Michelson interferometer 
detectors of LIGO, separated by 3000 km at Hanford, Washington and at Livingston, 
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Louisiana, simultaneously observed transient gravitational-wave signals, shown in 
Figure 12.2 (Abbott et al., 2016a).

To many, the timing of the signal seemed too good to be true, for it was only sev-
eral days previously that the collaboration had completed a five-year upgrade to its 
instruments. Moreover, the LIGO collaboration had also given a small number of its 
members the power to inject fake signals and to hide whether they were real or simu-
lated in order to test the team’s responses. After a long day of calls and e-mails, it was 
determined that no such “blind injection” had occurred (Castelvecchi, 2016).

The team then decided to take data for another month before beginning a full 
analysis: the researchers needed to record the natural noise present in their detec-
tors to have something to compare with the signal. They concluded that the odds of 
noise producing that loud pattern—and the very same pattern in both Louisiana and 
Washington at about the same time—were so low that it should only occur by chance 
less than once every 203,000 years (Castelvecchi, 2016).

12.2.1 � INFORMATION EXTRACTED FROM THE SIGNALS

The basic features of GW150914 point to it being produced by the coalescence of two 
black holes—i.e., their orbital inspiral, merger, and subsequent final black hole ring-
down. Over 0.2 s, the signal increases in frequency and amplitude in about 8 cycles 

FIGURE 12.1  Emission of gravitational waves deduced from the orbital phase residuals on 
PSR1913+16 observed between September 1974 and March 1981. The points are the observed 
residuals; the curvature of the parabola corresponds to the general relativistic prediction: 
�Pb = - ´ -2 40 10 12. ; if there is no gravitational radiation, a straight line may result (Taylor & 

Weisberg, 1982).
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from 35 to 150 Hz, where the amplitude reaches a maximum. The most plausible 
explanation for this evolution is the inspiral of two orbiting masses m1 and m2 due to 
gravitational-wave emission (cf. Sec. 12.1). At the lower frequencies, such evolution is 
characterized by the chirp mass (Blanchet et al., 1995)
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where f and �f  are the observed frequency and its time derivative and G and c are 
the gravitational constant and speed of light. Estimating f and �f  from the data in 
Figure 12.2, we obtain a chirp mass ∼30MS, implying that the total mass M = m1 + m2 

FIGURE 12.2  The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, 
left column panels) and Livingston (L1. right column panels) detectors. Top row, left: H1 strain. 
Top row, right: L1 strain. GW150914 arrived first at L1 and 6.9 ms later at H1; for visual com-
parison, the H1 data are also shown, shifted in time by this amount and inverted (to account 
for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto 
each detector in the 35−350 Hz band. Solid lines show a numerical relativity waveform for a 
system with parameters consistent with those recovered from GW150914 (Mroué et al., 2013) 
confirmed to 99.9% by an independent calculation based on Campanelli et al. (2006). Third 
row: Residuals after subtracting the filtered numerical relativity waveform from the filtered 
detector time series. Bottom row: A time-frequency representation (Chatterji et al., 2004) of the 
strain data, showing the signal frequency increasing over time (Abbott et al., 2016a).
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is ≳70 MS in the detector frame. This bounds the sum of the Schwarzschild radii of 
the binary components to 2GM/c2 ≳ 210 km. To reach an orbital frequency of 75 Hz 
(half the gravitational-wave frequency) the objects must have been very close and 
very compact; equal Newtonian point masses orbiting at this frequency would be 
only ≃350 km apart.

From the waveforms, the researchers were thus able to deduce that one black hole 
was about 36 times the mass of the Sun, and the other was about 29 times the solar 
mass. Those then coalesce into a black hole of 62 solar masses, with a mass defect of 
three solar masses. The estimated total energy radiated in gravitational waves is thus 
∼3.0MSc2, which traveled across the Universe for 1.3 billion years of luminosity dis-
tance to reach us. A peak gravitational-wave luminosity of ∼3.6 × 1056 erg/s, equiva-
lent to ∼200MSc2/s, may have been reached.

12.2.2 � ITEMS TO BE ENSURED WITH THE SIGNALS

Undoubtedly, the first direct detection of the gravitational waves exhibited in Figure 
12.2 is quite convincing. There seem to remain some items to be ensured in the inter-
pretation, however.

	 1.	In a number of microquasars hitherto observed (cf. Sec. 11.5.1), the masses of 
the stellar black holes definitely established have not exceeded 15MS. Analysis 
of GW150914 has doubled this record at a stroke (i.e., 36MS and 29MS), and then 
doubled it again (i.e., 62MS). Neither have we seen a binary of two black holes as 
yet. It therefore seems premature to accept the source parameters including the 
black hole merger, derived from comparison of post-Newtonian general-relativ-
istic simulations with only the 0.2 s waveform; separate, independent investiga-
tions may be needed for reconfirmation. We may recall in these connections, 
three analogous signals have been obtained (Abbott et al., 2016b, 2017a, b); fur-
ther studies inclusive of these signals should be illuminating.

	 2.	A connection with the electromagnetic-wave—γ-ray, X-ray, visible light, infra-
red, radio wave—astronomy needs to be established, especially in light of the 
Swift J164449.3+573451 observation of a wide range of spectrum in the elec-
tromagnetic radiation, with the peak luminosity in excess of ∼1048 erg/s, some 
3 × 1014 times the solar luminosity, as described in Sec. 11.5.3.

12.3 � OBSERVATION OF COLLIDING BINARY NEUTRON STARS
“Sometimes nature can be generous”—a Nature article begins by so quipping (Miller, 
2017). Its generosity was on full display on 17 August, 2017, when two neutron stars 
with masses in the range 1.2−1.6 MS spiraled together some 130 million light years 
away. The event, called GW170817 (Abbott et al., 2017c), may provide even greater 
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treasure than the black hole mergers presented in the preceding section, because 
it produced both gravitational waves and electromagnetic radiation. Figure 12.3 
displays an illustrative drawing for the merger of binary neutron-star system.

GW170817 was observed by the Advanced LIGO as well as by the Advanced Virgo 
gravitational-wave detector, situated outside Pisa in Italy, and its distance from the 
US-based LIGO detectors allowed the location of GW170817 on the sky to be deter-
mined with an uncertainty of about 30 square degrees, compared with 600 square 
degrees or more for the detections by the LIGO detectors alone.

GW170817 was observed also in the γ-ray burst GRB170817A, detected by Fermi-
GBM (gamma-ray burst monitor) 1.7 s after the coalescence (Connaughton, 2017). This 
observation corroborates the hypothesis of a neutron star merger and the first direct 
evidence of a link between these mergers and short γ-ray bursts.

GW170817 was observed further in X-ray, visible light, and infrared (Arcavi et al., 
2017; Pian et al., 2017; Troja et al., 2017; Smartt et al., 2017; Kasen et al., 2017). As a result, 
the event provides tests of alternative theories of gravity. It also delivers strong evi-
dence for the formation path of at least some of the heavy elements in the Universe 
(those much heavier than iron).

Since the Hulse–Taylor discovery, radio pulsar surveys have found several 
more binary neutron-star (BNS) systems in our Galaxy (Manchester et al., 2005). 
Understanding the orbital dynamics of these systems inspired detailed theoretical 

FIGURE 12.3  Illustrative drawing for the merger of binary neutron-star system (Miller, 2017). 
Gravitational waves have been detected from the coalescence of two orbiting neutron stars 
(Abbott et al., 2017c). Unlike the previous discoveries of the gravitational waves (Abbott et 
al., 2016a, b, 2017a, b), the event has been observed across the electromagnetic spectrum. The 
Fermi Gamma-ray Space Telescope saw a flush of g-rays just two seconds after the neutron-
star merger (Connaughton, 2017). The flash is consistent with a cosmic explosion called a 
g-ray burst. In addition, five papers (Arcavi et al., 2017; Pian et al., 2017; Troja et al., 2017; 
Smartt et al., 2017; Kasen et al., 2017) report the emission of X-rays, optical light (blue), and 
infrared light (red) from the merged neutron stars.
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predictions for gravitational-wave signals from compact binaries (Blanchet et al., 
1995, 2004). Models of the population of compact binaries, informed by the known 
binary pulsars, predict that the network of advanced gravitational-wave detectors 
operating at design sensitivity may possibly observe between one BNS merger every 
few years to hundreds per year (Abbott et al., 2017c).

For all of these reasons, GW170817 represents a remarkable opportunity to make 
major progress in multiple fields of physics and astronomy, and it whets our appetite 
for the many expected observations of BNS mergers in future campaigns. 
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APPENDIX I: THE δ-FUNCTIONS
The function δ(x) satisfying
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is called the delta function. For an arbitrary function f(x) defined over the domain 
−∞ < x < ∞, the following relations hold:
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Various limiting forms exist as analytic expressions for the delta function. For 
example,
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satisfy the foregoing relations (“Im” means the imaginary part).
A three-dimensional delta function δ(r) with respect to the spatial coordinates 

r = (x, y, z) can be produced from the product of the one-dimensional delta functions 
as

	 d d d d( ) ( ) ( ) ( ).r = x y z 	 (AI.7)
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APPENDIX II: FOURIER ANALYSES 
AND APPLICATION

In this volume, we frequently use Fourier analyses of the physical quantities to 
describe such effects as fluctuations. This appendix summarizes the essence and 
application of the Fourier analyses.

Let a quantity, a(r, t), be a function of the space-time coordinates, r and t, satisfying 
the periodic boundary conditions with the volume V = L3:

	 a t a n L n L n L tx y z( , ) ( , ).r r x y z= + + + 	 (AII.1)

Here, x, y, and z are the unit vectors in the x, y, and z directions; nx, ny, and nz represent 
positive and negative integers including 0. In the text, we may sometimes consider 
the cases with L = 1; such a case is then referred to as a Fourier analysis with the peri-
odic boundary conditions in a unit volume.

The space-time Fourier components of a(r,t) are then calculated as
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Since we have adopted the periodic boundary conditions for a cube of volume L3, the 
wave vector k takes on discrete values,
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The original function a(r,t) may be reproduced from (AII.2) through the inverse 
Fourier transformation as
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where the summation with respect to k is performed over those discrete values speci-
fied by (AII.3).

As (AII.3) indicates, a volume (2π/L)3 in the three-dimensional wave-number space 
(kx, ky, kz) corresponds to a wave vector pertaining to the summation of (AII.4). In the 
limit of L → ∞, the summation in (AII.4) turns into a three-dimensional integration 
with respect to k. In this case, since

	 ® º
( )å òò ò ò-¥

¥

-¥

¥

-¥

¥

-¥

¥

L
dk dk dk

L
dx y z3 3

32 2 2 2k

k
p p p p

, 	 (AII.5)

Appendix



 166        Appendix﻿

Appendix

(AII.4) is transformed as
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The three-dimensional delta function δ(r) introduced in (AI.7) of Appendix I is Fourier 
transformed as
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Hence, we find
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with the aid of (AII.6).
As an application of the Fourier analysis, we take up the problem of solving (1.12) 

in Sec. 1.3.2. First, we multiply both sides of (1.12) by exp(−ik·r) and integrate the result 
with respect to r. Assuming that ϕ(r) approaches zero sufficiently fast in the limit 
r → ∞, we obtain by partial integrations

	

d i d i i

k d i

r k r r r k k r r

r k

∫ ∫
∫

− ⋅ ∇ = − ⋅ ⋅ ∇

= − − ⋅

exp( ) ( ) ( )exp( ) ( )

exp(

2

2

φ φ

rr r

k

) ( )⋅

= −

φ

φk2

	 (AII.9)

That the aforementioned assumption is satisfied can be confirmed a posteriori. The 
final line of (AII.9) is the definition of ϕk.

With the aid of (AII.7) and (AII.9), we find that (1.12) reduces to
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Carrying out the inverse Fourier transformation of (AII.10) in accord with (AII.6), 
where θ refers to the angle between k and r, we obtain
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We note that the integrand is an even function of k and that sin(kr) is the imaginary 
part (Im) of exp(ikr) = cos(kr) + isin(kr). Hence, we may rewrite the equation above in 
the form,
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To carry out this integral, we close the contour of integration by an infinite semicircle 
C∞ on the upper half of the complex k plane as shown in Figure AII.1. The integrand 
of (AII.11) has the first-order poles at k = ±i/λD; the residue at k = i/λD enclosed by the 
contour of integration is
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In light of Cauchy’s theorem, we obtain
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The second term on the left-hand side of (AII.12) is the integration along the infinite 
semicircle on the upper-half plane shown in Figure AII.1. We transform it into an 
integration from 0 to π with respect to θ by putting k = Kexp(iθ); in the limit of K → ∞, 
this term vanishes. Substitution of (AII.12) to (AII.11) yields (AII.9).

FIGURE AII.1  Contour of integration in Eq. (AII.12).
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If, in particular, we let the second term on the left-hand side of (1.12) approach 
0, i.e., lD

- ®2 0 , ϕ(r) should coincide with ϕ0(r) = Z0e/r, the bare Coulomb potential. 
Consequently, the Fourier transformation of the bare Coulomb potential is given by 
(AII.10) where lD

- ®2 0  is taken, that is,
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APPENDIX III: THE FLUCTUATION-
DISSIPATION THEOREM

In the theory of the many-particle system in thermodynamic equilibrium, the 
fluctuation–dissipation theorem provides a rigorous connection between the 
spectral functions and the imaginary parts of the relevant linear response 
functions (Callen & Welton, 1951; Kubo, 1957). The theorem relates the canonically 
(or grand canonically) averaged commutator [ , ] and anticommutator { , } of 
any pair of Hermitian operators, such as the number densities evaluated at two 
different points in space and time. The average of such a commutator is related to 
a response function, while the average of an anticommutator gives a correlation 
function, which turns into a structure factor or a spectral function of fluctuations 
after Fourier transformations. It may therefore be said that the theorem possesses 
a form unique in physics, relating the properties of the system in equilibrium (i.e., 
fluctuations) with the parameters that characterize the irreversible processes, that 
is, the imaginary parts of the response functions. The contents of the fluctuation–
dissipation theorem are summarized in this appendix.

We begin with a set of external disturbances,

	 a t a i t tr k r, exp( ) = × -( ) +[ ] +w 0 cc, 	 (AIII.1)

applied to a many-particle system in thermodynamic equilibrium; the system would 
be uniform in the absence of the disturbances (cc stands for the complex conjugate 
and 0 designates a positive infinitesimal).

These disturbances then produce an external Hamiltonian,

	 H t d A a t
V

ext ( ) = - ( ) ( )òå r r r, , 	 (AIII.2)

where A represents the physical quantity observable in the system that is coupled 
to the disturbance (AIII.1); the sum in (AIII.2) goes over the set of the disturbances 
(AIII.1). The total Hamiltonian written as the sum of the unperturbed and external 
contributions,

	 H H H ttot ext= + ( ), 	 (AIII.3)

then drives the system out of equilibrium according to the Heisenberg equation of 
motion (see 2.20).
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A physical quantity B, which can be the same as A, of the system is perturbed and 
thereby deviates from its average value by δB(r, t). Within the framework of the linear 
response formalism (e.g., Sec. 2.2.1), the deviations may be expressed as

	 d wB t B i t tr k r,( ) = × -( ) +[ ] +exp cc.0 	 (AIII.4)

In this case,

	 c wBA k, /( ) = B a 	 (AIII.5)

gives a linear response function in its general form. Explicit calculations with the 
Hamiltonian (AIII.3) yield a commutator expression for the response function:

	 c w wBA k r r r r k r, , , , exp( ) = ¢ ¢ +( ) ¢ ¢( )éë ùû - × -( )[ò ò
¥i

d dt B + t t A t i t
� 0

]]. 	 (AIII.6)

Here, A(r, t) and B(r, t) are the Heisenberg operators evolving with the unperturbed 
Hamiltonian as in (2.4) and <…> refers to the expectation value in the unperturbed 
equilibrium state. The linear response functions therefore depend only on the system 
properties without perturbations.

The physical quantities A and B fluctuate in space and time even in a system under 
thermodynamic equilibrium. The correlation function between them is defined in 
terms of the statistical average of the anticommutator as

	 C t B t t A tBA r r r r, , , , .( ) = ¢ + ¢ +( ) ¢ ¢( ){ }1
2

	 (AIII.7)

Fourier transformation of such a correlation function yields a structure factor or a 
spectral function of the fluctuations:

	 S d dtC t i tBA BAk r r k r, , exp .w
p

w( ) = ( ) - × -( )[ ]ò ò-¥
¥1

2
	 (AIII.8)

It is then connected with the linear response function (AIII.6) via the fluctuation–
dissipation theorem,

	 S
i

k TB
BA BA ABk k k, coth , , .w

p
w

c w c w( ) = - æ
è
ç

ö
ø
÷ ( ) - - -( )éë ùû

� �
4 2

	 (AIII.9)

In conjunction with the considerations related to static responses in many-particle 
systems, it is instructive to treat a specific case of external disturbance, which in terms 
of the spatial Fourier component takes the form

	
∂
∂

≡ =( )
( )

=
′′ ( )

→ → −∞

∞

∫B
a

B t
a

dlim
,

lim
,

.
k k

k

k

k
0 0

0δ
π

ω
χ ω

ω
1 BA

	 (AIII.10)
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The Fourier component δB(k, t = 0) of the induced fluctuation is then calculated in 
terms of the relaxation functions

	 ′′ ( ) = ′ ′ +( ) ′ ′( )  − ⋅ −∫ ∫−∞

∞

χ ω ωBA
1

k r r r r, , , , exp
2�

d dt B + t t A t i k r tt( )[ ] 	 (AIII.11)

as

	
δ

π
ω

χ ω
ω

B t
a

d
k T

B t A t
B

k

k

k
k k

, ,
, , ,

=( )
( )

=
′′ ( ) = =( ) − =( )

−∞

∞

∫0 1
2

0 0
1 BA

  . 	 (AIII.12)

Thermodynamic sum rules for the relaxation functions are finally obtained in the long 
wavelength limit of (AIII.12) as

	
¶
¶

º
=( )

( )
=

( )
® ® -¥

¥

òB
a

B t
a

dlim
,

lim
,

.
k k

k

k

k
0 0

0d
p

w
c w

w
1 BA

²

	 (AIII.13)

The compressibility sum rule and the spin-susceptibility sum rule in Sec. 2.2.6 are 
typical examples of these thermodynamic sum rules.
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APPENDIX IV: FERMI INTEGRALS
In the treatment of a free-electron system at finite temperatures, it is useful to define 
the Fermi integrals:

	 I dx
x

x
n

n

a
a

( ) º
-( ) +

¥

ò0 1exp
. 	 (AIV.1)

For the electrons in the paramagnetic state (2.51), the normalization condition (2.39) 
is then expressed as

	 I1 2
3 22

3
/

/ ,a q( ) = - 	 (AIV.2)

where α = βμσ, β (=1/kBT) is the inverse temperature in energy unit, and θ represents 
the ratio between that temperature and the Fermi energy, EF, as expressed by (1.5).

The Fermi pressure p0 of the free-electron system is likewise expressed as

	 b q ap n I0
3 2

3 2= /
/ ( ). 	 (AIV.3)

The ideal-gas contribution to the free energy per unit volume is then calculated as

	 b a bf n p0 0= - . 	 (AIV.4)

Useful fitting formulas for the chemical potential and the Fermi pressure are

	 βµ θ
π

θ θ
θσ = − + + +

+

− +( ) − +( )

−
3
2

4
3 1

1 1 2

ln ln
A B

A

b b

b

/

	 (AIV.5)

with A = 0.25954, B = 0.072, and b = 0.858; and

	
b q q

q
p
n

X Y
X

y y

y
0

1 1 2

1
2
5 1

= + +
+

- +( ) - +( )

-

/

, 	 (AIV.6)

with X = 0.27232, Y = 0.145, and y = 1.044. Maximum deviations of (AIV.5) from the 
exact values determined from (AIV.2) are about 0.26% at θ ~ 0.05; those of (AIV.6) from 
the exact values determined from (AIV.3) are about 0.26% at θ ~ 5.

In the classical limit—when θ ≫ 1—the Fermi integrals may be expanded as (e.g., 
Pathria, 1972)

	 I s ss

s

n
na n a( ) = +( ) -( ) ( )+

=

¥
- +( )åG 1 1 1

1

1exp , 	 (AIV.7)
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where

	 G z tt t zz( ) = -( ) >( )
¥

-ò d
0

1 0exp Re . 	 (AIV.8)

is the gamma function. In this limit, one thus has

	 α θ
π

= − +3
2

4
3

ln ln , 	 (AIV.9)

	
bp
n

0 1= . 	 (AIV.10)

In the quantum limit of strong degeneracy—when θ ≪ 1—
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(Landau & Lifshitz, 1969), where

	 V
n

n

x xx( ) = >
-

¥

å 1
1

1

, 	 (AIV.12)

is Riemann’s zeta function. Hence,

	 µσ = EF , 	 (AIV.13)

	 p nEF0 2 5= ( )/ , 	 (AIV.14)

in this limit. For reference, we list some values of those functions:
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APPENDIX V: FUNCTIONAL 
DERIVATIVES

The functional derivative technique is closely related to the dielectric formulations 
and the density-functional theory treated in Chap. 2. In this appendix, fundamental 
relations in the functional derivatives are summarized.

Let F[f(x)] be a functional of a function f(x) with a variable x defined over a domain, 
a ≤ x ≤ b. The functional derivative, δF/δf(x), is given in terms of the increment δF pro-
duced by an infinitesimal variation δf(x) of f(x) as

	 d d
d

dF
F= ò dx

f x
f x

a

b

( )
( ). 	 (AV.1)

It has the following properties:
	 1.	Identity relation:

	
d
d

d
f x
f x

x x
¢( )

( )
= - ¢( ). 	 (AV.2)

	 2.	Product rule: When a functional is expressed by a simple product of the func-
tions f(xi) as

	 F = ò Õ
=

dx dx f xN
a

b

i

i

N

1

1

� ( ), 	 (AV.3)

	 then

	
d
d

F
f x

N dx dx f xN
a

b

i

i

N

( )
( ).= ò Õ

=

2

2

� 	 (AV.4)

	 3.	Chain rule: When a functional F is a functional of G(xʹ) which in turn is a func-
tional of f(x), then

	
d
d

d
d

d
d

F F
G

G
f x

dx
x

x
f xa

b

( )
.= ¢

¢( )
¢( )

( )ò 	 (AV.5)

	 4.	When a functional is given by

F = ( )ò dxF f x
a

b

( ) , 	 (AV.6)
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		  where F( f(x)) is a function of f(x), then

	
d
d

F
f x

dF f x

df x( )
( )

( )
.=

( )
	 (AV.7)
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